summaryrefslogtreecommitdiff
path: root/2219/CH11/EX11.6/Ex11_6.sce
diff options
context:
space:
mode:
Diffstat (limited to '2219/CH11/EX11.6/Ex11_6.sce')
-rwxr-xr-x2219/CH11/EX11.6/Ex11_6.sce22
1 files changed, 22 insertions, 0 deletions
diff --git a/2219/CH11/EX11.6/Ex11_6.sce b/2219/CH11/EX11.6/Ex11_6.sce
new file mode 100755
index 000000000..e957b9b3e
--- /dev/null
+++ b/2219/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,22 @@
+//Chapter 11 example 6
+//------------------------------------------------------------------------------
+clc;
+clear;
+// Given data
+h = 35786; // ht of geo.stationary orbit above earth surface
+T = 365; // time in days
+r = 6378 // radius of earth in km
+
+// ie(t) = 23.4*sin(2*%pi*t/T)
+// for a circular orbit of 20000 km radius ,phi = 37.4° ,Therefore, the time from first day of eclipse to equinox is given by substituting ie(t) = 37.4/2 = 18.7°
+phi = 37.4
+ie = (phi/2)*(%pi/180)
+k = 23.4*(%pi/180)
+t = (365/(2*%pi))*asin((ie/k))
+// for geostationary orbit
+phimax = 180 - 2*(acos(r/(r+h)))*(180/%pi)
+t_geo = (365/(2*%pi))*asin((8.7*%pi/180)/k)
+
+// Output
+mprintf('Total time from first day of eclipse to last day of eclipse = %3.1f days\n Total time from first day of eclipse to last day of eclipse for geostationary orbit = %3.2f days',t,t_geo)
+//------------------------------------------------------------------------------