diff options
Diffstat (limited to '2216')
61 files changed, 1228 insertions, 0 deletions
diff --git a/2216/CH10/EX10.1/ex_10_1.sce b/2216/CH10/EX10.1/ex_10_1.sce new file mode 100755 index 000000000..c93cfbcbb --- /dev/null +++ b/2216/CH10/EX10.1/ex_10_1.sce @@ -0,0 +1,19 @@ +//Example 10.1;refractive index and bandwidth +clc; +clear; +close; +//given data : +format('v',5) +lamda=1.55*10^-6;// in m +del_lamda=1*10^-9;// in m +L=320*10^-6;// in m +n=(lamda)^2/(2*del_lamda*L); +Gs=10^(5/10);// 5 dB is equivalent to 3.16 +R1=30/100; +R2=R1; +c=3*10^8;// in m/s +del_v=(c/(%pi*n*L))*asin((1-(Gs*sqrt(R1*R2)))/(sqrt(4*Gs*sqrt(R1*R2)))); +disp(n,"refrative index is") +format('v',6) +disp(del_v*10^-9,"spectral bandwidth in GHz is") +//bandwidth is calculated wrong in the textbook diff --git a/2216/CH10/EX10.2/ex_10_2.sce b/2216/CH10/EX10.2/ex_10_2.sce new file mode 100755 index 000000000..8dc7c8ada --- /dev/null +++ b/2216/CH10/EX10.2/ex_10_2.sce @@ -0,0 +1,17 @@ +//Example 10.2;small-signal gain of EDFA and maximum pssible achievable gain +clc; +clear; +close; +ts=0.80;// +sa=4.6444*10^-25;//in m^2 +n12=6*10^24;//m^-3 +se=4.644*10^-25;//m^2 +n21=0.70;// +l=7;//in meter +x=((sa*n12*l*(((se/sa)+1)*n21-1)));// +G=ts*exp(x);// +Gdb=10*log10(G);// +Gmax=exp(se*n12*l);// +Gmaxdb=10*log10(Gmax);// +disp(Gdb,"small signal gain of EDFA in dB is") +disp(Gmaxdb,"maximum possible achievable gain in dB is") diff --git a/2216/CH10/EX10.3/ex_10_3.sce b/2216/CH10/EX10.3/ex_10_3.sce new file mode 100755 index 000000000..1a6b4f477 --- /dev/null +++ b/2216/CH10/EX10.3/ex_10_3.sce @@ -0,0 +1,29 @@ +//Example 10.3;output signal power and overall gain +clc; +clear; +close; +format('v',6) +disp("part (a)") +psin=1*10^-6;//in watts +ppin=1;//in watts +gr=5*10^-14;//mW^-1 +ap1=60*10^-12;//m^2 +l=2000;//meter +asdb=0.15;//dB/km +as=3.39*10^-5;//m^-1 +apdb=0.20;//db/km +ap=4.50*10^-5;//m^-1 +z=(1-exp(-ap*l))/ap;// +y=(gr/ap1);// +y1=z*y;// +y2=y1-(as*l);// +psl=psin*exp(y2);// +disp(psl*10^6,"output signal power for forward pumping in micro Watt is") +format('v',5) +disp("part (b)") +y1=z*y;// +y2=y1-(as*l);// +psl=psin*exp(y2);// +gfra=psl/(psin);// +Gdb=10*log10(gfra);// +disp(Gdb,"overall gain in dB is") diff --git a/2216/CH11/EX11.1/ex_11_1.sce b/2216/CH11/EX11.1/ex_11_1.sce new file mode 100755 index 000000000..ed1cc9666 --- /dev/null +++ b/2216/CH11/EX11.1/ex_11_1.sce @@ -0,0 +1,11 @@ +//Example 11.1:interaction length +clc; +clear; +close; +format('v',6) +po=1;//assume +p1=po/2;// +p2=p1;// +kl=asin(sqrt(p1));//in degree +disp(kl,"interaction length is") +//answer is in the form of pi in the textbook diff --git a/2216/CH11/EX11.2/ex_11_2.sce b/2216/CH11/EX11.2/ex_11_2.sce new file mode 100755 index 000000000..58dfbd95d --- /dev/null +++ b/2216/CH11/EX11.2/ex_11_2.sce @@ -0,0 +1,19 @@ +//Example 11.2:position +clc; +clear; +close; +a=8.2;//in micro meter +n1=1.45;// +n2=1.446;// +h1=1.31;//in micro meter +h2=1.55;///in micro meter +v1=((2*%pi*a*sqrt(n1^2-n2^2))/h1);// +v2=((2*%pi*a*sqrt(n1^2-n2^2))/h2);// +db=2.439;// +del=5.5096*10^-3;// +k1=1.0483;//mm^-1;// +k2=1.2839///m^-1 +l1=((%pi)/(4*k1));//in mm +l2=((%pi)/(4*k2));//in mm +disp("output port positioned at "+string(l2)+" mm with respect to the input port will gather signals at h1=1310nm") +disp("output port positioned at "+string(l1)+" mm with respect to the input port will gather signals at h1=1550nm") diff --git a/2216/CH11/EX11.4/ex_11_4.sce b/2216/CH11/EX11.4/ex_11_4.sce new file mode 100755 index 000000000..d411a07b4 --- /dev/null +++ b/2216/CH11/EX11.4/ex_11_4.sce @@ -0,0 +1,13 @@ +//Example 11.4: ARRAYED GUIDE +clc; +clear; +close; +//given data : +c=3*10^8; +lamda_c=1.55*10^-6;// in m +vc=c/lamda_c; +n=16;// number of channel +f=100*10^9;// in Hz +delV_FSR=n*f; +m=round(vc/delV_FSR); +disp(m,"required order of the arrayed waveguide, = ") diff --git a/2216/CH12/EX12.1/ex_12_1.sce b/2216/CH12/EX12.1/ex_12_1.sce new file mode 100755 index 000000000..d2088df56 --- /dev/null +++ b/2216/CH12/EX12.1/ex_12_1.sce @@ -0,0 +1,22 @@ +//Example 12.1: link length and reise time +clc; +clear; +close; +af=2.5;//dB/km +ac=0.5;//dB/splice +nc=1;// +lc=1;//dB +ncc=2;// +plx=-10;//dBm +prx=-42;//dBm +Ms=6;//dB +L=((plx-prx-Ms-(lc*ncc))/(af+ac));// +TTX=12;//NS +TRX=11;//NS +NS1=3;//NS/KM +NS2=1;//NS/KM +tmat=(NS1*L);//ns +tint=(NS2*L);//ns +tsys=sqrt((TTX^2+tmat^2+tint^2+TRX^2));//ns +disp(L,"maximum possible link length in km is") +disp(round(tsys),"total rise time of the system in ns is") diff --git a/2216/CH12/EX12.2/ex_12_2.sce b/2216/CH12/EX12.2/ex_12_2.sce new file mode 100755 index 000000000..069a568f7 --- /dev/null +++ b/2216/CH12/EX12.2/ex_12_2.sce @@ -0,0 +1,42 @@ +//Example 12.2: link length and bandwidth +clc; +clear; +close; +format('v',4) +disp("part (a)") +af=3;//dB/km +ac=0.5;//dB/splice +nc=1;// +lc=1;//dB +ncc=1.5;// +plx=0;//dBm +prx=-25;//dBm +Ms=7;//dB +L=((plx-prx-Ms-(lc*ncc))/(af+ac));// +TTX=12;//NS +TRX=11;//NS +NS1=3;//NS/KM +NS2=1;//NS/KM +tmat=(NS1*L);//ns +tint=(NS2*L);//ns +tsys=sqrt((TTX^2+tmat^2+tint^2+TRX^2));//ns +disp(L,"maximum possible link length in km is") +format('v',3) +disp("part (b)") +af=3;//dB/km +ac=0.5;//dB/splice +nc=1;// +lc=1;//dB +ncc=1.5;// +plx=-0;//dBm +prx=-25;//dBm +Ms=7;//dB +L=((plx-prx-Ms-(lc*ncc))/(af+ac));// +TTX=1;//NS +TRX=5;//NS +NS1=9;//NS/KM +NS2=2;//NS/KM +tf=((NS1*L)^2+(NS2*L)^2);// +tsys=sqrt((TTX^2+tf+TRX^2));//ns +df=0.35/(tsys*10^-3);// +disp(round(df),"system bandwidth in MHz iz") diff --git a/2216/CH12/EX12.3/ex_12_3.sce b/2216/CH12/EX12.3/ex_12_3.sce new file mode 100755 index 000000000..e3b539ebb --- /dev/null +++ b/2216/CH12/EX12.3/ex_12_3.sce @@ -0,0 +1,13 @@ +//Example 12.3;no. of subscribers +clc; +clear; +close; +pt=1;//mW +pn=-40;//dBm +pn1=10^(pn/10);// +c=0.05;// +d=0.11;// +x=((pn1)/(pt*c));// +y=((log10(x))/(log10((1-d)*(1-c))));// +n=y+1;// +disp(round(n),"no. of subscribers are") diff --git a/2216/CH12/EX12.4/ex_12_4.sce b/2216/CH12/EX12.4/ex_12_4.sce new file mode 100755 index 000000000..7919bb433 --- /dev/null +++ b/2216/CH12/EX12.4/ex_12_4.sce @@ -0,0 +1,14 @@ +//Example 12.4: Total power +clc; +clear; +close; +//given data : +L_eff=20;// in km +del_lamdaC=125;// in nm +gR=6*10^-14;// m/W +A_eff=55*10^-12;// in m^2; +del_lamdaS=0.8;// in nm +N=32;// number of channels +F=0.1;// constant +P_tot=(4*F*del_lamdaC*A_eff)/(gR*del_lamdaS*L_eff*(N-1)); +disp(P_tot,"Total power,P_tot(mW) = ") diff --git a/2216/CH12/EX12.5/ex_12_5.sce b/2216/CH12/EX12.5/ex_12_5.sce new file mode 100755 index 000000000..d2514ea37 --- /dev/null +++ b/2216/CH12/EX12.5/ex_12_5.sce @@ -0,0 +1,20 @@ +//Example 12.5: SBS threshold power +clc; +clear; +close; +//given data : +gb=4*10^-11;// in m/W +A_eff=55*10^-12;// in m^2 +L_eff=20;// in km +lamda_p=1.55;// micro-m +n=1.46;// constant +Va=5960;// for the silica fiber in m-s^-1 +Vb=(2*n*Va)/lamda_p; +del_v=100*10^6;// in Hz +del_Vb=20*10^6;// in Hz +b1=1; +b2=2; +P_th=((21*b1*A_eff)/(gb*L_eff))*(1+(del_v/del_Vb)) +P_th1=((21*b2*A_eff)/(gb*L_eff))*(1+(del_v/del_Vb)) +disp(P_th,"SBS threshold power for the worst case in mW") +disp(P_th1,"SBS threshold power for the best possible case in mW") diff --git a/2216/CH13/EX13.1/ex_13_1.sce b/2216/CH13/EX13.1/ex_13_1.sce new file mode 100755 index 000000000..2a1e9e3fd --- /dev/null +++ b/2216/CH13/EX13.1/ex_13_1.sce @@ -0,0 +1,31 @@ +//Example 13.1: plot +clc; +clear; +close; +lod=[0;20;40;60;80;100;160];//in micro meter +slong=[1.0;0.95;0.92;0.89;0.86;0.83;0.80];// +lad=[0;10;20;30;40;50;60;70;80;90;100];//in micro meter +slat=[0;0.1;0.2;0.3;0.4;0.5;0.6;0.7;0.8;0.9;1.0];// +add=[0;1;2;3;4;5;6;7;8;9;10];// +sang=[0;0.5;0.6;0.7;0.8;0.9;1.0;1.1;.12];// +t=0:20:200; +s1=1.0:-0.03:0.7;// +subplot(131) +plot(t,s1);// +xtitle("Variation of Slong as a function of Δ x (with Δy=0 and Δθ=0) ") +xlabel("Longitudinal displacement Δ x (micro meter)") +ylabel("Slong (normalised)") +t1=0:10:100; +s2=1:-0.1:0;// +subplot(132) +plot(t1,s2);// +xtitle("Variation of Slat as a function of Δ y (with Δx=0 and Δθ=0) ") +xlabel("Lateral displacement Δ y (micro meter)") +ylabel("Slat (normalised)") +t2=0:1:10; +s3=1.0:-0.03:0.7;// +subplot(133) +plot(t2,s3);// +xtitle("Variation of Sang as a function of Δ θ (with Δx=0 and Δy=0) ") +xlabel("Angular displacement Δ θ (deg)") +ylabel("Sang (normalised)") diff --git a/2216/CH13/EX13.2/ex_13_2.sce b/2216/CH13/EX13.2/ex_13_2.sce new file mode 100755 index 000000000..d7aa4bde1 --- /dev/null +++ b/2216/CH13/EX13.2/ex_13_2.sce @@ -0,0 +1,14 @@ +//Example 13.2: phase change +clc; +clear; +close; +format('v',6) +//given data : +n=1.45;// index of core +a=10^-5;// in C^-1 +b=5.1*10^-7;// in C^-1 +lamda=.633*10^-6;// in m +// formula:- (1/L)*(del_fi/del_T)=((2*PI)/lamda)[(n/L)*(del_L/del_T)+(del_n/del_T)] +//let we assume a=del_n/del_T, b=(1/L)*(del_L/del_T), c=(1/L)*(del_fi/del_T) +c=((2*%pi)/lamda)*((n*b)+a); +disp(c,"phase change,(rad/m°C) = ") diff --git a/2216/CH13/EX13.3/ex_13_3.sce b/2216/CH13/EX13.3/ex_13_3.sce new file mode 100755 index 000000000..9e83d80c6 --- /dev/null +++ b/2216/CH13/EX13.3/ex_13_3.sce @@ -0,0 +1,13 @@ +//Example 13.3: phase shift +clc; +clear; +close; +//given data : +format('e',9) +L=500;// in m +D=0.1;//in m +ohm=7.3*10^-5;// in rad s^-1 +lamda=0.85*10^-6;// in m +c=3*10^8;// in m/s +del_fi=(2*%pi*L*D*ohm)/(c*lamda); +disp(del_fi,"phase shift,del_fi(rad) = ") diff --git a/2216/CH14/EX14.1/ex_14_1.sce b/2216/CH14/EX14.1/ex_14_1.sce new file mode 100755 index 000000000..9cc8f842e --- /dev/null +++ b/2216/CH14/EX14.1/ex_14_1.sce @@ -0,0 +1,22 @@ +//Example 14.1: energy and threshold electrical energy +clc; +clear; +close; +format('v',4) +disp("part (a)") +no=1.9*10^19;//cm^-3;// +hc=6.6*10^-34;// +v=5.45*10^14;//Hz +av=2;// +nv=1;// +n2=no/2;// +eng=((n2*hc*v)/(av*nv));// J cm^-2 +disp(eng,"energy in J cm^-2 is") +format('v',5) +disp("part (b)") +oe=0.50;// +mr=0.15;// +lr=0.20;// +teng=eng/(oe*mr*lr);// +disp(teng,"threshold energy in J cm^-2 is") +//electrical energy is calculated wrong in the textbook diff --git a/2216/CH14/EX14.3/ex_14_3.sce b/2216/CH14/EX14.3/ex_14_3.sce new file mode 100755 index 000000000..383debcbb --- /dev/null +++ b/2216/CH14/EX14.3/ex_14_3.sce @@ -0,0 +1,30 @@ +//Example 14.3: output power +clc; +clear; +close; +h=0.6943*10^-6;// +lm=10;//in cm +r1=1.0;// +r2=0.8;// +t1=0.98;// +as=1;//cm^2;// +Ls=2;//cm +gth=((1/(2*lm))*log((1/(r1*r2*(t1)^8))))+(as*Ls)/lm;// +sg=1.5*10^-20;// +ndth=gth/sg;//cm^-3;// +nth=ndth*as*lm;//atoms +ni=5*nth;//atoms +ng=1.78;// +ns=2.7;// +lair=2;// +c=3*10^10;// +trt=((2*ng*lm)/c)+((2*ns*Ls)/c)+((2*lair)/c);//seconds +npmax=((ni-nth)/2)-(nth/2)*log(ni/nth);//photons +L=14;//cm +at=((as*Ls)/L)+((1/(2*L))*log(1/(r1*t1^8)));// +aext=((1/(2*L))*log(1/r2));// +tp=((trt)/(1-(r1*r2*t1^8*exp(-2*as*Ls))));//seconds +hc=6.6*10^-34;// +pmax=((aext/at)*hc*c*npmax)/(h*tp);//in watts +disp(pmax*10^-6,"maximum power in MW is") +//answer is wrong in the textbook diff --git a/2216/CH14/EX14.4/ex_14_4.sce b/2216/CH14/EX14.4/ex_14_4.sce new file mode 100755 index 000000000..059a6035a --- /dev/null +++ b/2216/CH14/EX14.4/ex_14_4.sce @@ -0,0 +1,22 @@ +//Example 14.4: pulse width and spatial length +clc; +clear; +close; +format('v',5) +disp("part (a)") +//given data : +del_v=1.5*10^9;// in Hz +tau_p=1/del_v; +C=3*10^8;// constant +disp(tau_p*10^9,"pulse width,del_v(ns) = ") +Lp=C*tau_p; +disp(Lp*10^2,"spatial length,Lp(cm) = ") +//spatial length is calculated wrong in the textbook +format('v',5) +disp("part (b)") +del_v=6*10^10;// in Hz +tau_p=1/del_v; +C=3*10^8;// constant +disp(tau_p*10^12,"pulse width,del_v(ps) = ") +Lp=C*tau_p*10^3; +disp(Lp,"spatial length,Lp(mm) = ") diff --git a/2216/CH14/EX14.5/ex_14_5.sce b/2216/CH14/EX14.5/ex_14_5.sce new file mode 100755 index 000000000..45efd6941 --- /dev/null +++ b/2216/CH14/EX14.5/ex_14_5.sce @@ -0,0 +1,11 @@ +//Example 14.5: time difference +clc; +clear; +close; +format('v',5) +n=1.33;// +x=2;// +l=50;//m +c=3*10^8;//m/s +dt=((n*x*l)/c);//s +disp(dt*10^6,"time difference is,(micro-seconds)=") diff --git a/2216/CH2/EX2.1/ex_2_1.sce b/2216/CH2/EX2.1/ex_2_1.sce new file mode 100755 index 000000000..cc514fbbe --- /dev/null +++ b/2216/CH2/EX2.1/ex_2_1.sce @@ -0,0 +1,23 @@ +//Example 2.1 // NA ,angles and pulse broadning +clc; +clear; +close; +format('v',9 ) +disp("part (a)") +n1=1.5;//core refrative index +n2=1.48;//claddin refractive index +a=100/2;//radius in micro meter +na=1;//air refrative index +NA=sqrt(n1^2-n2^2);//numerical aperture +disp(NA,"numerical aperture is") +disp("part (b)") +am=(asind(NA));// +tm=asind(NA/n1);// +tc=asind(n2/n1);// +disp(am,"angle in degree is (αm)") +disp(tm,"angle in degree is (Om)") +disp(tc,"angle in degree is(Φc)") +disp("part (c)") +c=3*10^8;//speed of light in m/s +dtl=((n1/n2)*(n1-n2)/c);//pulse broadning per unit length +disp(dtl,"pulse broadning per unit length in sm^-1") diff --git a/2216/CH2/EX2.2/ex_2_2.sce b/2216/CH2/EX2.2/ex_2_2.sce new file mode 100755 index 000000000..c92ca8229 --- /dev/null +++ b/2216/CH2/EX2.2/ex_2_2.sce @@ -0,0 +1,17 @@ +//Example 2.2 // minimum and maximum number of reflections +clc; +clear; +close; +format('v',5) +n1=1.5;//core refrative index +n2=1.48;//claddin refractive index +a=100/2;//radius in micro meter +na=1;//air refrative index +NA=sqrt(n1^2-n2^2);//numerical aperture +am=(asind(NA));// +tm=asind(NA/n1);// +tc=asind(n2/n1);// +L=((a*10^-6)/(tand(tm)));//length in meter +x=(1/(2*L));//maximum number of reflections per meter +disp("all other rays will suffer reflections between these two extremes of "+string(0)+" and "+string(x)+" m^-1") +//answer is wrong in the textbook diff --git a/2216/CH2/EX2.3/ex_2_3.sce b/2216/CH2/EX2.3/ex_2_3.sce new file mode 100755 index 000000000..f3344f789 --- /dev/null +++ b/2216/CH2/EX2.3/ex_2_3.sce @@ -0,0 +1,11 @@ +//Example 2.3 // pulse broadning +clc; +clear; +close; +format('v',6) +h=0.85;//WAVELENGTH IN MICRO METER +y=0.035;//spectral width +c=0.021;//constant +cl=3;//speed of light in m/s +dtl=(y/cl)*c;// +disp(dtl*10^4,"pulse broadning in ns km^-1") diff --git a/2216/CH2/EX2.4/ex_2_4.sce b/2216/CH2/EX2.4/ex_2_4.sce new file mode 100755 index 000000000..ed61bfa3d --- /dev/null +++ b/2216/CH2/EX2.4/ex_2_4.sce @@ -0,0 +1,21 @@ +//Example 2.4 // pulse broadning +clc; +clear; +close; +format('v',6) +disp("part (a)") +h=850;//WAVELENGTH IN NANO METER +l=80;//fiber length in Km +dh=30;//in Nano Meter +m1=105.5;//material dispersion for h=850nm in ps/nm-Km +m2=2.8;//material dispersion for h=1300nm in ps/nm-Km +t=m1*l*dh*10^-3;//material dispersion in ns when h=850nm +disp(t,"material dispersion in ns when h=850nm") +disp("part (b)") +h=1300;//WAVELENGTH IN NANO METER +l=80;//fiber length in Km +dh=30;//in Nano Meter +m1=105.5;//material dispersion for h=850nm in ps/nm-Km +m2=2.8;//material dispersion for h=1300nm in ps/nm-Km +t=m2*l*dh*10^-3;//material dispersion in ns when h=850nm +disp(t,"material dispersion in ns when h=1300nm") diff --git a/2216/CH2/EX2.5/ex_2_5.sce b/2216/CH2/EX2.5/ex_2_5.sce new file mode 100755 index 000000000..ca8b4af2e --- /dev/null +++ b/2216/CH2/EX2.5/ex_2_5.sce @@ -0,0 +1,21 @@ +//Example 2.5; pulse broadning +clc; +clear; +close; +format('v',6) +disp("part (a)") +h=850;//WAVELENGTH IN NANO METER +l=80;//fiber length in Km +dh=2;//in Nano Meter +m1=105.5;//material dispersion for h=850nm in ps/nm-Km +m2=2.8;//material dispersion for h=1300nm in ps/nm-Km +t=m1*l*dh*10^-3;//material dispersion in ns when h=850nm +disp(t,"material dispersion in ns when h=850nm") +disp("part (b)") +h=1300;//WAVELENGTH IN NANO METER +l=80;//fiber length in Km +dh=2;//in Nano Meter +m1=105.5;//material dispersion for h=850nm in ps/nm-Km +m2=2.8;//material dispersion for h=1300nm in ps/nm-Km +t=m2*l*dh*10^-3;//material dispersion in ns when h=850nm +disp(t,"material dispersion in ns when h=1300nm") diff --git a/2216/CH3/EX3.1/ex_3_1.sce b/2216/CH3/EX3.1/ex_3_1.sce new file mode 100755 index 000000000..8e0a21414 --- /dev/null +++ b/2216/CH3/EX3.1/ex_3_1.sce @@ -0,0 +1,14 @@ +//Example 3.1 // range of propagation constants and maximum no. of modes +clc; +clear; +close; +format('v',9) +n1=1.5;//core refractive index +n2=1.49;//cladding refrative index +t=9.83;//thickness of guided layer in micro meter +h=0.85;//wavelength in µm +b1=((2*%pi*n1)/(h*10^-6));//phase propagation constant in m^-1 +b2=((2*%pi*n2)/(h*10^-6));//phase propagation constant in m^-1 +m=((4*t)/h)*(sqrt(n1^2-n2^2));//number of modes +disp("range of propagation constant is "+string(b1)+" to "+string(b2)+" in m^-1") +disp(round(m/2),"number of modes are") diff --git a/2216/CH3/EX3.2/ex_3_2.sce b/2216/CH3/EX3.2/ex_3_2.sce new file mode 100755 index 000000000..98e08717f --- /dev/null +++ b/2216/CH3/EX3.2/ex_3_2.sce @@ -0,0 +1,10 @@ +//Example 3.2 // thickness +clc; +clear; +close; +format('v',6) +n1=3.6;//core refractive index +n2=3.56;//cladding refrative index +h=0.85;//wavelength in µm +a=((h/(2*sqrt(n1^2-n2^2))));//thickness in µm +disp("thicknes of the slab should not be greater than "+string(a)+" µm") diff --git a/2216/CH3/EX3.3/ex_3_3.sce b/2216/CH3/EX3.3/ex_3_3.sce new file mode 100755 index 000000000..c19dc2231 --- /dev/null +++ b/2216/CH3/EX3.3/ex_3_3.sce @@ -0,0 +1,60 @@ +//Example 3.3 // no. of modes +clc; +clear; +close; +format('v',10) +disp("part (a)") +n1=1.5;//core refractive index +n2=1.48;//cladding refrative index +t=10.11;//thickness of guided layer in micro meter +h=1.55;//wavelength in µm +b1=((2*%pi*n1)/(h*10^-6));//phase propagation constant in m^-1 +b2=((2*%pi*n2)/(h*10^-6));//phase propagation constant in m^-1 +m=((2*%pi*t)/h)*(sqrt(n1^2-n2^2));//number of modes +disp(round(m/2),"number of modes are") +disp("part (b)") +n1=1.5;//core refractive index +n2=1.48;//cladding refrative index +t1=10.11;//thickness of guided layer in micro meter +t=t1/2; +h=1.55;//wavelength in µm +b1=((2*%pi*n1)/(h*10^-6));//phase propagation constant in m^-1 +b2=((2*%pi*n2)/(h*10^-6));//phase propagation constant in m^-1 +mo=(((2*%pi*t1)/h)*(sqrt(n1^2-n2^2)))/2;//number of modes +uma0=1.30644;// for m=0 from the curve +uma1=2.59574;// for m=1 from the curve +uma2=3.83747;// for m=2 from the curve +uma3=4.9063;// for m=3 from the curve +wma0=4.8263;// for m=0 from the curve +wma1=4.27342;// for m=1 from the curve +wma2=3.20529;// for m=2 from the curve +wma3=0.963466;// for m=3 from the curve +um0=uma0/(t*10^-6);//in m^-1 +um1=uma1/(t*10^-6);//in m^-1 +um2=uma2/(t*10^-6);//in m^-1 +um3=uma3/(t*10^-6);//in m^-1 +wm0=wma0/(t*10^-6);//in m^-1 +wm1=wma1/(t*10^-6);//in m^-1 +wm2=wma2/(t*10^-6);//in m^-1 +wm3=wma3/(t*10^-6);//in m^-1 +bm0=((wm0*t*10^-6)/mo)^2;//for m=0 +bm1=((wm1*t*10^-6)/mo)^2;//for m=1 +bm2=((wm2*t*10^-6)/mo)^2;//for m=2 +bm3=((wm3*t*10^-6)/mo)^2;//for m=3 +m0=sqrt((bm0*(b1^2-b2^2))+b2^2);//for m=0 in m^-1 +m1=sqrt((bm1*(b1^2-b2^2))+b2^2);//for m=1 in m^-1 +m2=sqrt((bm2*(b1^2-b2^2))+b2^2);//for m=2 in m^-1 +m3=sqrt((bm3*(b1^2-b2^2))+b2^2);//for m=3 in m^-1 +params = [" " "m" "um[m^-1]" "wm[m^-1]" "bm" ]; +m = ["0" "1" "2" "3"]'; +um = ["um0" "um1" "um2" "um3"]'; +wm = string([22.41 11.77 33.41 4.24]'); +bm = string([26 19 22 17]'); +params = ["m" "um[m^-1]" "wm[m^-1]" "bm" "ßm[m^-1]" ]; +city=string([0 1 2 3]'); +towns = string([um0 um1 um2 um3]'); +country = string([wm0 wm1 wm2 wm3]'); + pop = string([bm0 bm1 bm2 bm3]'); + temp = string([m0 m1 m2 m3]'); + table = [params; [ city towns country pop temp ]] + disp(table ,"constants are :") diff --git a/2216/CH3/EX3.4/ex_3_4.sce b/2216/CH3/EX3.4/ex_3_4.sce new file mode 100755 index 000000000..30d350158 --- /dev/null +++ b/2216/CH3/EX3.4/ex_3_4.sce @@ -0,0 +1,13 @@ +//Example 3.4 //G factor +clc; +clear; +close; +format('v',10) +d=0.793;//in micro meter +v=%pi/2;//point of intersection +ua=0.934;// +wa=1.262;// +Y=(wa*(1+(sind(ua))*(cosd(ua))/ua));// +G=(1+((cosd(ua))^2)/Y)^(-1);// +disp(G,"G factor is") +//answer is wrong in the textbook diff --git a/2216/CH4/EX4.1/ex_4_1.sce b/2216/CH4/EX4.1/ex_4_1.sce new file mode 100755 index 000000000..50c3c2ed2 --- /dev/null +++ b/2216/CH4/EX4.1/ex_4_1.sce @@ -0,0 +1,30 @@ +//Example 4.1;//normalised frequency,propagation constants and phase velocity +clc; +clear; +close; +format('v',5) +disp("part (a)") +n1=1.46;//core refrative index +di=7.2;//core diameter +n=1.46;//core refrative index +d=1;//relative differnce +h=1.55 ;// in micro meter +v=((2*%pi*(di*10^-6)/2)*n*sqrt(2*(d/100)))/(h*10^-6);//normalised frequency parameter +disp(v,"normalised frequency parameter is") +disp("part (b)") +format('e',11) +b1=(2*%pi*n1)/(h*10^-6);// in m^-1 +n2=n1-(d/100);//cladding refrative index +b2=(2*%pi*n2)/(h*10^-6);// in m^-1 +bo1=0.82;// +b11=0.18;// +B01=(b2^2+(bo1*(b1^2-b2^2)))^(1/2);// +B11=(b2^2+(b11*(b1^2-b2^2)))^(1/2);// +disp("propogation constants are Bo1 "+string(B01)+" and B11 "+string(B11)+" ") +//propogation constants are calculated wrong in the text bOOK +disp("part (c)") +format('e',9) +c=3*10^8;// in ms^-1 +vp1=(2*%pi*c)/(h*10^-6*B01);//IN MS^-1 +vp2=(2*%pi*c)/(h*10^-6*B11);//IN MS^-1 +disp("phase velocity are (Vp)01 "+string(vp1)+" ms^-1 and (Vp)11 "+string(vp2)+" ms^-1 ") diff --git a/2216/CH4/EX4.2/ex_4_2.sce b/2216/CH4/EX4.2/ex_4_2.sce new file mode 100755 index 000000000..8bc34fc20 --- /dev/null +++ b/2216/CH4/EX4.2/ex_4_2.sce @@ -0,0 +1,9 @@ +//Example 4.2;//frational power +clc; +clear; +close; +format('v',4) +p01=0.11;//from the graph +p11=0.347;//from the graph +disp(p01*100,"power for LP01 mode is (%) ") +disp(p11*100,"power for LP11 mode is (%)" ) diff --git a/2216/CH4/EX4.3/ex_4_3.sce b/2216/CH4/EX4.3/ex_4_3.sce new file mode 100755 index 000000000..817557070 --- /dev/null +++ b/2216/CH4/EX4.3/ex_4_3.sce @@ -0,0 +1,11 @@ +// Example 4.3:Number of the modes +clc; +clear; +close; +format('v',6) +h= 0.85;// Wavelenght in micrometers +a= 50;// Core radius in micrometers +NA=0.17;// +v1=(2*%pi*a*NA)/h; +m2= round((v1^2)/2); +disp(m2,"Number of modes") diff --git a/2216/CH4/EX4.4/ex_4_4.sce b/2216/CH4/EX4.4/ex_4_4.sce new file mode 100755 index 000000000..5d3d4104c --- /dev/null +++ b/2216/CH4/EX4.4/ex_4_4.sce @@ -0,0 +1,12 @@ +// Example 4.4:core diameter +clc; +clear; +close; +format('v',4) +d=0.02;//difference +n1=1.5;//core refrative index +m=1000;// number of modes +h= 1.3;// Wavelenght in micrometers +a=((h/(%pi*n1))*(m/d)^(1/2));//core diamter in micro meter +disp(a,"core diameter in micro meter") + diff --git a/2216/CH4/EX4.5/ex_4_5.sce b/2216/CH4/EX4.5/ex_4_5.sce new file mode 100755 index 000000000..c719fe748 --- /dev/null +++ b/2216/CH4/EX4.5/ex_4_5.sce @@ -0,0 +1,15 @@ +// Example 4.5:core diameter +clc; +clear; +close; +format('v',5) +d=0.02;//difference +a1=75;//in micro meter +n1=1.45;//core refrative index +m=700;// number of modes +v=sqrt(4*m);// +h=((2*%pi*(a1/2)*n1*sqrt(2*(d/100)))/v);//in micro meter +vc=2.405*sqrt(2);//for single mode fiber +a=((vc*h)/(%pi*n1*sqrt(2*(d/100))));//core diamter in micro meter +disp(a,"maximum core diameter in micro meter") + diff --git a/2216/CH5/EX5.1/ex_5_1.sce b/2216/CH5/EX5.1/ex_5_1.sce new file mode 100755 index 000000000..ebe5de136 --- /dev/null +++ b/2216/CH5/EX5.1/ex_5_1.sce @@ -0,0 +1,18 @@ +// Example 5.1:w and wp +clc; +clear; +close; +format('v',7) +n=1.46;//core refractive index +d=0.003;//differnce in core-cladding refrative index +a=4;//core radius in micro meter +h1=1.30;// inmicro meter +h2=1.55;//in micro meter +v1=((2*%pi*(a*10^-6))*n*sqrt(2*(d)))/(h1*10^-6);//normalised frequency parameter +v2=((2*%pi*(a*10^-6))*n*sqrt(2*(d)))/(h2*10^-6);//normalised frequency parameter +w1=(a*10^-6)*(0.65+((1.619)/(v1)^(3/2))+(2.879/(v1)^6));//in meter +wp1=w1-(a*10^-6)*(0.016+((1.567)/(v1)^7));//in micro meter +w2=(a*10^-6)*(0.65+((1.619)/(v2)^(3/2))+(2.879/(v2)^6));//in meter +wp2=w2-(a*10^-6)*(0.016+((1.567)/(v2)^7));//in micro meter +disp(" w is "+string(w1*10^6)+" and wp is "+string(wp1*10^6)+" in micro meter when wavelength is 1.30 micro meter") +disp(" w is "+string(w2*10^6)+" and wp is "+string(wp2*10^6)+" in micro meter when wavelength is 1.55 micro meter") diff --git a/2216/CH5/EX5.2/ex_5_2.sce b/2216/CH5/EX5.2/ex_5_2.sce new file mode 100755 index 000000000..9ef0d025b --- /dev/null +++ b/2216/CH5/EX5.2/ex_5_2.sce @@ -0,0 +1,15 @@ +// Example 5.2;//difference between propogation constant and modal birefringence +clc; +clear; +close; +format('v',6) +disp("part (a)") +bl=10;//beat length in cm +h=1;//in micro meter +db=((2*%pi)/(bl*10^-2));//in m^-1 +disp(db,"difference between propogation constant in m^-1") +disp("part (b)") +format('v',8) +mb=db*((h*10^-6)/(2*%pi));//modal birefringence +disp(mb,"modal birefringence is") +//answer is approximately equal to the answer in the book diff --git a/2216/CH5/EX5.3/ex_5_3.sce b/2216/CH5/EX5.3/ex_5_3.sce new file mode 100755 index 000000000..f9543cb8e --- /dev/null +++ b/2216/CH5/EX5.3/ex_5_3.sce @@ -0,0 +1,21 @@ +// Example 5.3:waveguide dispersion factor +clc; +clear; +close; +format('v',6) +n=1.45;//core refractive index +d=0.003;//differnce in core-cladding refrative index +n2=1.45*(1-d);//cladding refractive index +d1=8.2;//core diameter in micro meter +a=d1/2;//core radius in micro meter +h1=1.30;// inmicro meter +h2=1.55;//in micro meter +v1=(2*%pi*a*n*sqrt(2*d))/h1;//normalised frequency parameter +v2=((2*%pi*(a))*n*sqrt(2*(d)))/(h2);//normalised frequency parameter +v1dv=0.080+0.549*(2.834-v1)^2;// +v2dv=0.080+0.549*(2.834-v2)^2;// +c=3*10^8;// in m/s +dw1=-((n2*d*v1dv)/(c*h1))*10^12;//waveguide dispersion factor in ps nm^-1 km^-1 +dw2=-((n2*d*v2dv)/(c*h2))*10^12;//waveguide dispersion factor in ps nm^-1 km^-1 +disp(" waveguide dispersion factor is "+string(dw1)+" in ps nm^-1 km^-1 at wavelength 1.3 micro meter") +disp(" waveguide dispersion factor is "+string(dw2)+" in ps nm^-1 km^-1 at wavelength 1.55 micro meter") diff --git a/2216/CH5/EX5.4/ex_5_4.sce b/2216/CH5/EX5.4/ex_5_4.sce new file mode 100755 index 000000000..72ad573d6 --- /dev/null +++ b/2216/CH5/EX5.4/ex_5_4.sce @@ -0,0 +1,15 @@ +// Example 5.4:diameter of the core +clc; +clear; +close; +format('v',4) +c=3*10^8;//in m/s +dm=6;//material dispersion in ps nm^-1 km^-1 +h=1.55;//in micro meter +n1=1.45;//core refrative index +d=0.005;//differnce +n2=n1*(1-d);//cladding refrative index +x=((-dm/(((-n2*d)/(c*h))*10^12))-0.080)/0.549;// +v=-(sqrt(x)-2.834);// +d=((v*h)/(%pi*n1*sqrt(2*d)));//diameter in micro meter +disp(d,"diameter of the core in micro meter") diff --git a/2216/CH5/EX5.5/ex_5_5.sce b/2216/CH5/EX5.5/ex_5_5.sce new file mode 100755 index 000000000..16501e917 --- /dev/null +++ b/2216/CH5/EX5.5/ex_5_5.sce @@ -0,0 +1,13 @@ +// Example 5.5:splice loss +clc; +clear; +close; +format('v',5) +h1=1.30;//in micro meter +wp1=4.6155;//in micro meter +h2=1.55;//in micro meter +wp2=5.355;//in micro meter +sl1=4.34*(1/wp1)^2;//splice loss in dB +sl2=4.34*(1/wp2)^2;//splice loss in dB +disp(sl1,"splice loss in dB when wavelength is 1.30 micro meter") +disp(sl2,"splice loss in dB when wavelength is 1.55 micro meter") diff --git a/2216/CH6/EX6.1/ex_6_1.sce b/2216/CH6/EX6.1/ex_6_1.sce new file mode 100755 index 000000000..aab9f619b --- /dev/null +++ b/2216/CH6/EX6.1/ex_6_1.sce @@ -0,0 +1,11 @@ +// Example 6.1:refractive index +clc; +clear; +close; +format('v',5) +l=0.47;//in db +nf=10^((l/-10));// +x=poly(0,"x"); +p=1+-2.22*x+x^2;// +y=roots(p);// +disp(y(1,1),"refractive index is") diff --git a/2216/CH6/EX6.2/ex_6_2.sce b/2216/CH6/EX6.2/ex_6_2.sce new file mode 100755 index 000000000..5bde9cc0c --- /dev/null +++ b/2216/CH6/EX6.2/ex_6_2.sce @@ -0,0 +1,29 @@ +// Example 6.2:loss +clc; +clear; +close; +disp("part (a)") +format('v',5) +dya=0.1;// +n1=1.50;//refrative index +na=1;// +k1=n1/n1;// +k2=1;// +nf=((16*(n1)^2)/((n1+1)^4));// +nlat=(2/(3.14))*(acos(dya/2)-(dya/2)*(1-(dya/2)^2)^(1/2));// +nt=nf*nlat;// +lt=(-10*log10(nt));//in dB +disp(lt,"insertion loss at the joint in dB is") +disp("part (b)") +format('v',6) +dya=0.1;// +n1=1.50;//refrative index +na=1;// +k1=n1/n1;// +k2=1;// +nf=((16*(n1)^2)/((n1+1)^4));// +nlat=(2/(%pi))*(acos(dya/2)-(dya/2)*(1-(dya/2)^2)^(1/2));// +nt=k2*nlat;// +lt=(-10*log10(nt));//in dB +disp(lt,"insertion loss at the joint in dB is") + diff --git a/2216/CH6/EX6.3/ex_6_3.sce b/2216/CH6/EX6.3/ex_6_3.sce new file mode 100755 index 000000000..85aa9ebe3 --- /dev/null +++ b/2216/CH6/EX6.3/ex_6_3.sce @@ -0,0 +1,23 @@ +// Example 6.3:loss +clc; +clear; +close; +format('v',5) +d=100;//micro meter +dx=0;// +dy=3;//in micro mete +dth=3;//in degree +dthr=dth*(%pi/180);// +dya=0.02;// +n1=1.48;//refrative index +na=1;// +k1=n1/n1;// +k2=1;// +nf=((16*(n1)^2)/((n1+1)^4));// +nlat=(2/(%pi))*(acos(dy/100)-(dy/100)*(1-(dy/100)^2)^(1/2));// +NA=n1*(sqrt(2*dya));// +nang=((1-(na*dthr)/(%pi*NA)));// +nt=nf*nlat*nang;// +lt=(-10*log10(nt));//in dB +disp(lt,"total loss in dB is") + diff --git a/2216/CH6/EX6.4/ex_6_4.sce b/2216/CH6/EX6.4/ex_6_4.sce new file mode 100755 index 000000000..bb894d831 --- /dev/null +++ b/2216/CH6/EX6.4/ex_6_4.sce @@ -0,0 +1,18 @@ +// Example 6.4:loss +clc; +clear; +close; +format('v',8) +d1=80;//micro meter +na1=0.25;// +alpha1=2;// +d2=60;//in micro meter +na2=0.21;// +alpha2=1.9;// +ncd=(d2/d1)^2;// +nna=(na2/na1)^2;// +nalpha=((1+(2/alpha1))/(1+((2/alpha2))));// +nt=ncd*nna*nalpha;// +lt=(-10*log10(nt));//in dB +disp(lt,"total loss in dB is") + diff --git a/2216/CH6/EX6.5/ex_6_5.sce b/2216/CH6/EX6.5/ex_6_5.sce new file mode 100755 index 000000000..a688f1cc0 --- /dev/null +++ b/2216/CH6/EX6.5/ex_6_5.sce @@ -0,0 +1,24 @@ +// Example 6.5:loss +clc; +clear; +close; +format('v',5) +d1=60;//micro meter +na1=0.25;// +alpha1=2.1;// +d2=50;//in micro meter +na2=0.20;// +alpha2=1.9;// +ncd=(d2/d1)^2;// +nna=(na2/na1)^2;// +nalpha1=1;// +nalpha=((1+(2/alpha1))/(1+((2/alpha2))));// +ncd1=1;// +nna1=1;// +nt=ncd*nna*nalpha1;// +ltf=(-10*log10(nt));//in dB +nt1=ncd1*nna1*nalpha;// +ltb=(-10*log10(nt1));//in dB +disp(ltf,"total loss forward direction in dB is") +format('v',6) +disp(ltb,"total loss backward direction in dB is") diff --git a/2216/CH7/EX7.1/ex_7_1.sce b/2216/CH7/EX7.1/ex_7_1.sce new file mode 100755 index 000000000..6764caec5 --- /dev/null +++ b/2216/CH7/EX7.1/ex_7_1.sce @@ -0,0 +1,16 @@ +//Example 7.1: Intrinsic carrier +clc; +clear; +close; +//given data : +format('v',9) +m=9.11*10^-31;// in kg +k=1.38*10^-23;// in JK^-1 +h=6.626*10^-34;// in Js +ev=1.6*10^-19;// in J +T=300;// in K +me=0.07*m;// in kg +mh=0.56*m;// in kg +Eg=1.43*ev;// in J +ni=2*((2*%pi*k*T)/h^2)^(3/2)*(me*mh)^(3/4)*exp(-Eg/(2*k*T)); +disp(ni,"Intrinsic carrier concentration ,ni(m^-3) = ") diff --git a/2216/CH7/EX7.2/ex_7_2.sce b/2216/CH7/EX7.2/ex_7_2.sce new file mode 100755 index 000000000..fc90686d9 --- /dev/null +++ b/2216/CH7/EX7.2/ex_7_2.sce @@ -0,0 +1,15 @@ +//Example 7.2: Diffusion potential +clc; +clear; +close; +format('v',6) +//given data : +Na=5*10^23;// in m^-3 +Nd=5*10^21;// in m^-3 +T=300;// in K +e=1.6*10^-19;// in J +k=1.38*10^-23;// in JK^-1 +V=(k*T)/e; +ni=2.2*10^12;// in m^-3 +Vd=V*log((Na*Nd)/ni^2); +disp(Vd,"Diffusion potential,Vd(V) = ") diff --git a/2216/CH7/EX7.3/ex_7_3.sce b/2216/CH7/EX7.3/ex_7_3.sce new file mode 100755 index 000000000..636b26f0f --- /dev/null +++ b/2216/CH7/EX7.3/ex_7_3.sce @@ -0,0 +1,19 @@ +//Example 7.3: Injection efficiency +clc; +clear; +close; +format('v',7) +//given data : +Na=10^23;// in m^-3 +Nd=10^21;// in m^-3 +T=300;// in K +e=1.6*10^-19;// in J +k=1.38*10^-23;// in JK^-1 +mue=0.85;// in m^2V^-1s^-1 +muh=0.04;// in m^2V^-1s^-1 +De=(mue*k*T)/e;// in m^2s^-1 +Dh=(muh*k*T)/e;// in m^2s^-1 +Le=1; +Lh=Le; +eta_inj=1/(1+((De/Dh)*(Lh/Le)*(Nd/Na))); +disp(eta_inj,"Injection efficiency,eta_inj = ") diff --git a/2216/CH7/EX7.4/ex_7_4.sce b/2216/CH7/EX7.4/ex_7_4.sce new file mode 100755 index 000000000..8a938b161 --- /dev/null +++ b/2216/CH7/EX7.4/ex_7_4.sce @@ -0,0 +1,18 @@ +//Example 7.4: Internal and quantum efficiency +clc; +clear; +close; +//given data : +format('v',4) +disp("part (a)") +tau_rr=1; +tau_nr=tau_rr; +eta_int=1/(1+(tau_rr/tau_nr)); +disp(eta_int,"Internal quantum efficiency = ") +disp("part (b)") +format('v',7) +ns=3.7; +na=1.5; +as=0; +eta_ext=eta_int*(1-as)*((2*na^3)/(ns*(ns+na)^2)); +disp(eta_ext,"External quantum efficiency = ") diff --git a/2216/CH7/EX7.5/ex_7_5.sce b/2216/CH7/EX7.5/ex_7_5.sce new file mode 100755 index 000000000..87e8bfa3d --- /dev/null +++ b/2216/CH7/EX7.5/ex_7_5.sce @@ -0,0 +1,11 @@ +//Example 7.5: The number of longitudinal modes excited +clc; +clear; +close; +format('e',10) +//given data : +lamda=632.8*10^-9;// in m +n=1; +L=20*10^-2;// in m +del_lamda=((lamda)^2/(2*n*L))*10^9; +disp(del_lamda,"The number of longitudinal modes excited,(nm) = ") diff --git a/2216/CH7/EX7.6/ex_7_6.sce b/2216/CH7/EX7.6/ex_7_6.sce new file mode 100755 index 000000000..86cc902cd --- /dev/null +++ b/2216/CH7/EX7.6/ex_7_6.sce @@ -0,0 +1,20 @@ +//Example 7.6: The reduction and Differential quantum efficiency +clc; +clear; +close; +//given data : +format('v',5) +disp("part (a)") +alfa_eff=1.5;// in mm^-1 +gama=0.8; +L=0.5;// in mm +R1=0.35; +R2=R1; +R2a=1.0; +g_th1=(1/gama)*(alfa_eff+(1/(2*L))*log(1/(R1*R2))); +g_th2=(1/gama)*(alfa_eff+(1/(2*L))*log(1/(R1*R2a))); +del_gth=g_th1-g_th2; +disp(del_gth,"The reduction in threshold gain ,(mm^-1) = ") +disp("part (b)") +eta_D=(gama*(g_th2-alfa_eff))/(g_th2); +disp(eta_D,"Differential quantum efficiency = ") diff --git a/2216/CH7/EX7.7/ex_7_7.sce b/2216/CH7/EX7.7/ex_7_7.sce new file mode 100755 index 000000000..6204ac140 --- /dev/null +++ b/2216/CH7/EX7.7/ex_7_7.sce @@ -0,0 +1,43 @@ +//Example 7.7: Internal and external power efficiency +clc; +clear; +close; +//given data : +disp("part (a)") +as=0;// +ns=3.7;// assuming that the example 7.4 +eta_int=0.50;// internal efficiency +V=1.5;// in V +I=120*10^-3;// in A +IBYe=120*10^-3;// +Eph=1.43;// in eV +eta_int=0.50;// internal efficiency +fi_int=eta_int*IBYe*Eph; +t_power=I*V; +P_int=fi_int/t_power; +disp(P_int,"The internal power efficiency = ") +disp("part (b)") +format('v',6) +eta_ext=eta_int*(1-as)*2/(ns*(ns+1)^2); +fi_ext=eta_ext*IBYe*Eph; +t_power=I*V; +P_ext=fi_ext/t_power; +disp(P_ext,"The external power efficiency = ") +disp("part (c)") +format('e',9) +V=1.5;// in V +I=120*10^-3;// in A +IBYe=120*10^-3;// +Eph=1.43;// in eV +n1=1.5; +n2=1.48; +na=n1; +eta_ext=0.0337; +eta_T=eta_ext*((n1^2-n2^2)/na^2); +fi_T=eta_T*IBYe*Eph; +t_power=I*V; +sfpc=fi_T/t_power; +O_loss=-10*log10(sfpc); +disp(sfpc,"The overall source fiber power coupling efficiency = ") +format('v',5) +disp(O_loss,"The optical loss,(dB) = ") diff --git a/2216/CH8/EX8.1/ex_8_1.sce b/2216/CH8/EX8.1/ex_8_1.sce new file mode 100755 index 000000000..493a78c02 --- /dev/null +++ b/2216/CH8/EX8.1/ex_8_1.sce @@ -0,0 +1,20 @@ +//Example 8.1: The photon energy and optical power +clc; +clear; +close; +//given data : +format('v',5) +disp("part (a)") +h=6.626*10^-34;// in Js +c=3*10^8;// in ms^-1 +E=1.52*10^-19;// in J +lamda=((h*c)/E)*10^6; +disp(lamda,"The photon energy,(micro-m) = ") +disp("part (b)") +e=1.6*10^-19;// in J +Ip=3*10^6;// in A +E=1.52*10^-19;// in J +eta=70/100; +R=(eta*e)/E; +P_in=(Ip/R)*10^-6; +disp(P_in,"The optical power,(micro W)") diff --git a/2216/CH8/EX8.2/ex_8_2.sce b/2216/CH8/EX8.2/ex_8_2.sce new file mode 100755 index 000000000..b8251bf8a --- /dev/null +++ b/2216/CH8/EX8.2/ex_8_2.sce @@ -0,0 +1,30 @@ +//Example 8.2: The quantum efficiency,Maximum possible band gap energy and mean output +clc; +clear; +close; +//given data : +disp("part (a)") +format('v',5) +e=1;// electron +p=2;// photon +eta=(e/p)*100; +disp(eta,"The quantum efficiency,eta(%) = ") +disp("part (b)") +h=6.626*10^-34;//in Js +c=3*10^8;// in m s^-1 +lamda_c=0.85*10^-6;// in m +Eg=((h*c)/lamda_c)/1.6*10^19; +disp(Eg,"Maximum possible band gap energy,Eg(eV) = ") +disp("part (c)") +e=1;// electron +p=2;// photon +eta=(e/p); +e=1.6*10^-19;// in J +h=6.626*10^-34;//in Js +c=3*10^8;// in m s^-1 +lamda_c=0.85*10^-6;// in m +Eg=((h*c)/lamda_c); +P_in=10*10^-6;// in W +Ip=((eta*e*P_in)/Eg)*10^6; +disp(Ip,"The mean output,Ip(micro A) = ") + diff --git a/2216/CH8/EX8.3/ex_8_3.sce b/2216/CH8/EX8.3/ex_8_3.sce new file mode 100755 index 000000000..630c1ae35 --- /dev/null +++ b/2216/CH8/EX8.3/ex_8_3.sce @@ -0,0 +1,21 @@ +//Example 8.3: The quantum efficiency and The responsivity of the diode +clc; +clear; +close; +//given data : +format('v',5) +disp("part (a)") +e=2*10^10;// in s^-1 +p=5*10^10;// in s^-1 +eta=e/p; +disp(eta,"The quantum efficiency = ") +disp("part (b)") +e=2*10^10;// in s^-1 +p=5*10^10;// in s^-1 +eta=e/p; +e=1.6*10^-19;// in J +h=6.626*10^-34;//in Js +c=3*10^8;// in m s^-1 +lamda=0.90*10^-6;// in m +R=(eta*e*lamda)/(h*c); +disp(R,"The responsivity of the diode,R(AW^-1) = ") diff --git a/2216/CH8/EX8.4/ex_8_4.sce b/2216/CH8/EX8.4/ex_8_4.sce new file mode 100755 index 000000000..648d9dc6f --- /dev/null +++ b/2216/CH8/EX8.4/ex_8_4.sce @@ -0,0 +1,15 @@ +//Example 8.4: The multiplication +clc; +clear; +close; +format('v',5) +//given data : +eta=40/100;// +e=1.6*10^-19;// in J +h=6.626*10^-34;//in Js +c=3*10^8;// in m s^-1 +lamda=1.3*10^-6;// in m +P_in=0.3*10^-6;// in W +I=6*10^-6;// in A +M=(I*h*c)/(P_in*eta*e*lamda); +disp(M,"The multiplication factor,M = ") diff --git a/2216/CH8/EX8.5/ex_8_5.sce b/2216/CH8/EX8.5/ex_8_5.sce new file mode 100755 index 000000000..ab38fbadb --- /dev/null +++ b/2216/CH8/EX8.5/ex_8_5.sce @@ -0,0 +1,12 @@ +//Example 8.5: Photon rate +clc; +clear; +close; +//given data : +format('v',9) +e=1.6*10^-19;// in J +M=800; +eta=90/100;// quantum efficiency +I=2*10^-9;// in A +P_rate=I/(e*eta*M); +disp(P_rate,"Photon incident rate(s^-1) = ") diff --git a/2216/CH8/EX8.6/ex_8_6.sce b/2216/CH8/EX8.6/ex_8_6.sce new file mode 100755 index 000000000..b0de7db9d --- /dev/null +++ b/2216/CH8/EX8.6/ex_8_6.sce @@ -0,0 +1,24 @@ +//Example 8.6: Gain and The output photocurrent +clc; +clear; +close; +//given data : +format('v',6) +disp("part (a)") +tf=6*10^-12;// in s +del_f=450*10^6;// in Hz +G=1/(2*%pi*tf*del_f); +disp(G,"the gain = ") +disp("part (b)") +format('e',10) +tf=6*10^-12;// in s +del_f=450*10^6;// in Hz +G=1/(2*%pi*tf*del_f); +eta=75/100; +P_in=5*10^-6;// in W +e=1.6*10^-19;// in J +lamda=1.3*10^-6; +h=6.626*10^-34;//in Js +c=3*10^8;// in m s^-1 +I=(G*eta*P_in*e*lamda)/(h*c); +disp(I,"The output photo-current,I(A)") diff --git a/2216/CH8/EX8.7/ex_8_7.sce b/2216/CH8/EX8.7/ex_8_7.sce new file mode 100755 index 000000000..b61b11889 --- /dev/null +++ b/2216/CH8/EX8.7/ex_8_7.sce @@ -0,0 +1,54 @@ +//Example 8.7: rms value of shot noise ,dark noise and thermal noise current and S/N ratio +clc; +clear; +close; +format('v',6) +disp("part (a)") +n=0.7;//efficiency +e=1.6*10^-19;//charge +h=1.3;//in micro meter +hc=6.626*10^-34;//plack constant +c=3*10^8;//m/s +pin=500;//nW +Ip=((n*e*h*10^-6*pin*10^-9)/(hc*c));//in amperes +df=25;//Mhz +f1=1;// +is2=(2*e*Ip*df*10^6*f1);// +is=sqrt(is2);//in amperes +Id=5*10^-9;//amperes +id2=(2*e*Id*df*10^6);// +id=sqrt(id2);//in amperes +k=1.38*10^-23;// +t=300;//in kelvin +rl=1000;//ohms +it2=((4*k*t*df*10^6)/rl);// +it=sqrt(it2);//in amperes +disp(is*10^9,"rms value of shot noise current is,(nA)=") +disp(id*10^9,"rms value of dark current is,(nA)=") +disp(it*10^9,"rms value of thermal noise current is,(nA)=") +format('v',4) +disp("part (b)") +n=0.7;//efficiency +e=1.6*10^-19;//charge +h=1.3;//in micro meter +hc=6.626*10^-34;//plack constant +c=3*10^8;//m/s +pin=500;//nW +Ip=((n*e*h*10^-6*pin*10^-9)/(hc*c));//in amperes +df=25;//Mhz +f1=1;// +is2=(2*e*Ip*df*10^6*f1);// +is=sqrt(is2);//in amperes +Id=5*10^-9;//amperes +id2=(2*e*Id*df*10^6);// +id=sqrt(id2);//in amperes +k=1.38*10^-23;// +t=300;//in kelvin +rl=1000;//ohms +it2=((4*k*t*df*10^6)/rl);// +it=sqrt(it2);//in amperes +itt2=is2+id2+it2;//in A^2 +ip2=Ip^2;// +sn=ip2/itt2;// +disp(sn,"S/N ratio is") +//S/N ratio is calculated wrong in the textbook diff --git a/2216/CH9/EX9.1/ex_9_1.sce b/2216/CH9/EX9.1/ex_9_1.sce new file mode 100755 index 000000000..ce70445c4 --- /dev/null +++ b/2216/CH9/EX9.1/ex_9_1.sce @@ -0,0 +1,11 @@ +//Example 9.1: The thickness +clc; +clear; +close; +format('v',7) +//given data : +lamda=589.3*10^-9;// in m +ne=1.553; +no=1.544; +x=(lamda/(4*(ne-no)))*10^3; +disp(x,"The thickness of the a quarter wave plate,x(mm) = ") diff --git a/2216/CH9/EX9.2/ex_9_2.sce b/2216/CH9/EX9.2/ex_9_2.sce new file mode 100755 index 000000000..542cc876a --- /dev/null +++ b/2216/CH9/EX9.2/ex_9_2.sce @@ -0,0 +1,11 @@ +//Example 9.2: The thickness +clc; +clear; +close; +//given data : +format('v',7) +lamda=589.3*10^-9;// in m +ne=1.486; +no=1.658; +x=(lamda/(2*(no-ne)))*10^3; +disp(x,"The thickness of the a quarter wave plate,x(mm) = ") diff --git a/2216/CH9/EX9.3/ex_9_3.sce b/2216/CH9/EX9.3/ex_9_3.sce new file mode 100755 index 000000000..6ff3343f7 --- /dev/null +++ b/2216/CH9/EX9.3/ex_9_3.sce @@ -0,0 +1,20 @@ +//Example 9.3:change in refractive index ,net phase shiftand Vpi +clc; +clear; +close; +format('v',6) +v=5;//kV +l=1;//cm +ez=(v*10^3)/(l*10^-2);//in V/m +no=1.51;// +r63=10.5*10^-12;//m/V +dn=((1/2)*no^3*r63*ez);// +h=550;//nm +dfi=((2*%pi*dn*l*10^-2)/(h*10^-9));// +fi=2*dfi;// +vpi=((h*10^-9)/(2*no^3*r63))*10^-3;//kV +disp(dfi,"change in refrative index is") +disp(fi,"net phase shift is") +format('v',4) +disp(vpi,"Vpi in kV is") +//refractive index and phase shift is in the form of pi in the textbook diff --git a/2216/CH9/EX9.4/ex_9_4.sce b/2216/CH9/EX9.4/ex_9_4.sce new file mode 100755 index 000000000..5b4f232e8 --- /dev/null +++ b/2216/CH9/EX9.4/ex_9_4.sce @@ -0,0 +1,29 @@ +//Example 9.4:phase difference,additional phase difference and Vpi +clc; +clear; +close; +format('v',7) +disp("part (a)") +h=550;//nm +l=3;//cm +no=1.51;// +ne=1.47;// +dfi=((2*%pi*l*10^-2*(no-ne))/(h*10^-9));// +disp(dfi,"phase differnce is") +//phase difference is in the form of pi in the textbook +disp("part (b)") +no=1.51;// +r63=26.4*10^-12;//m/V +V=200;// +d=0.25;//cm +dfi=((%pi*r63*no^3*(V)*(l*10^-2))/(h*10^-9*d*10^-2));// +disp(dfi,"additional phase differnce is") +//additional phase difference is in the form of pi in the textbook +disp("part (c)") +r63=26.4*10^-12;//m/V +format('v',5) +V=200;// +d=0.25;//cm +dfi=((%pi*r63*no^3*(V)*(l*10^-2))/(h*10^-9*d*10^-2));// +vpi=((h*10^-9)/(no^3*r63))*(d/l);//V +disp(vpi,"Vpi in V is") diff --git a/2216/CH9/EX9.5/ex_9_5.sce b/2216/CH9/EX9.5/ex_9_5.sce new file mode 100755 index 000000000..0100d36e1 --- /dev/null +++ b/2216/CH9/EX9.5/ex_9_5.sce @@ -0,0 +1,23 @@ +//Example 9.5: angle and relative intensity +clc; +clear; +close; +//given data : +disp("part (a)") +format('v',5) +m=1; +l=633*10^-9;// in m +f=5*10^6;// in Hz +v=1500;//in m/s +n=1.33;// for water +A=v/f; +theta=asind((l/(n*A))); +disp(theta,"angle (degree) = ") +disp("part (b)") +format('v',6) +del_n=10^-5; +L=1*10^-2;// in m +lamda=633*10^-9;// in m +eta=(%pi^2*del_n^2*L^2)/lamda^2; +disp(eta,"The relative intensity = ") + |