diff options
Diffstat (limited to '2129/CH3')
-rwxr-xr-x | 2129/CH3/EX3.10.1/ex3_10_1.sce | 27 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.10/ex3_10_10.sce | 13 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.11/ex3_10_11.sce | 10 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.12/ex3_10_12.sce | 18 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.13/ex3_10_13.sce | 19 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.14/ex3_10_14.sce | 13 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.15/ex3_10_15.sce | 15 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.16/ex3_10_16.sce | 19 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.17/ex3_10_17.sce | 20 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.18/ex3_10_18.sce | 15 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.19/ex3_10_19.sce | 26 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.2/ex3_10_2.sce | 25 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.20/ex3_10_20.sce | 19 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.21/ex3_10_21.sce | 13 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.22/ex3_10_22.sce | 17 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.3/ex3_10_3.sce | 32 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.4/ex3_10_4.sce | 16 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.5/ex3_10_5.sce | 16 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.6/ex3_10_6.sce | 16 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.7/ex3_10_7.sce | 10 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.8/ex3_10_8.sce | 33 | ||||
-rwxr-xr-x | 2129/CH3/EX3.10.9/ex3_10_9.sce | 12 |
22 files changed, 404 insertions, 0 deletions
diff --git a/2129/CH3/EX3.10.1/ex3_10_1.sce b/2129/CH3/EX3.10.1/ex3_10_1.sce new file mode 100755 index 000000000..b350405c6 --- /dev/null +++ b/2129/CH3/EX3.10.1/ex3_10_1.sce @@ -0,0 +1,27 @@ +// EXa 3.10.1
+clc;
+clear;
+close;
+// Given data
+t = 4.4 * 10^22;// total number of Ge atoms/cm^3
+n = 1 * 10^8;// number of impurity atoms
+N_A = t/n;// in atoms/cm^3
+N_A = N_A * 10^6;// in atoms/m^3
+N_D = N_A * 10^3;// in atoms/m^3
+n_i = 2.5 * 10^13;// in atoms/cm^3
+n_i = n_i * 10^6;// in atoms/m^3
+V_T = 26;//in mV
+V_T= V_T*10^-3;// in V
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"The contact potential in V is");
+// Part (b)
+t = 5* 10^22;// total number of Si atoms/cm^3
+N_A = t/n;// in atoms/cm^3
+N_A = N_A * 10^6;// in atoms/m^3
+N_D = N_A * 10^3;// in atoms/m^3
+n_i = 1.5 * 10^10;// in atoms/cm^3
+n_i = n_i * 10^6;// in atoms/m^3
+V_T = 26;//in mV
+V_T= V_T*10^-3;// in V
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"The contact potential in V is");
diff --git a/2129/CH3/EX3.10.10/ex3_10_10.sce b/2129/CH3/EX3.10.10/ex3_10_10.sce new file mode 100755 index 000000000..06111e42f --- /dev/null +++ b/2129/CH3/EX3.10.10/ex3_10_10.sce @@ -0,0 +1,13 @@ +// Exa 3.10.10
+clc;
+clear;
+close;
+// Given data
+I_o = 2.4 * 10^-14;
+I = 1.5;// in mA
+I=I*10^-3;// in A
+Eta = 1;
+V_T = 26;// in mV
+V_T= V_T*10^-3;// in V
+v =log((I + I_o)/I_o) * V_T;// in V
+disp(v,"The forward biasing voltage across the junction in V is");
diff --git a/2129/CH3/EX3.10.11/ex3_10_11.sce b/2129/CH3/EX3.10.11/ex3_10_11.sce new file mode 100755 index 000000000..7e3e9ceaa --- /dev/null +++ b/2129/CH3/EX3.10.11/ex3_10_11.sce @@ -0,0 +1,10 @@ +// Exa 3.10.11
+clc;
+clear;
+close;
+// Given data
+I_o = 10;// in nA
+// I = I_o * ((e^(v/(Eta * V_T))) - 1)
+// e^(v/(Eta * V_T)<< 1, so neglecting it
+I = I_o * (-1);// in nA
+disp(I,"The Diode current in nA is ");
diff --git a/2129/CH3/EX3.10.12/ex3_10_12.sce b/2129/CH3/EX3.10.12/ex3_10_12.sce new file mode 100755 index 000000000..021087a72 --- /dev/null +++ b/2129/CH3/EX3.10.12/ex3_10_12.sce @@ -0,0 +1,18 @@ +// Exa 3.10.12
+clc;
+clear;
+close;
+// Given data
+R = 4.5;// in ohm
+I = 44.4;// in mA
+I=I*10^-3;// in A
+V = R * I;// in V
+Eta = 1;
+V_T = 26;//in mV
+V_T=V_T*10^-3;// in V
+I_o = I/((%e^(V/(Eta * V_T))) -1);// in A
+// At
+V = 0.1;// in V
+r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));// in ohm
+disp(r_f,"The diode dynamic resistance in Ω is");
+
diff --git a/2129/CH3/EX3.10.13/ex3_10_13.sce b/2129/CH3/EX3.10.13/ex3_10_13.sce new file mode 100755 index 000000000..9d357237c --- /dev/null +++ b/2129/CH3/EX3.10.13/ex3_10_13.sce @@ -0,0 +1,19 @@ +// Exa 3.10.13
+clc;
+clear;
+close;
+// Given data
+V_D = 10;// in V
+// V_S = i*R_L + V_D
+V_S = V_D;// in V (i * R_L = 0)
+disp(V_S,"when diode is OFF, the voltage in volts is : ");
+R_L = 250;// in ohm
+I = V_S/R_L;// in A
+disp(I*10^3,"when diode is ON, the current in mA is");
+V_D= 0:0.1:10;// in V
+I= (V_S-V_D)/R_L*1000;// in mA
+plot(V_D,I)
+xlabel("V_D in volts");
+ylabel("Current in mA")
+title("DC load line");
+disp("DC load line shown in figure")
diff --git a/2129/CH3/EX3.10.14/ex3_10_14.sce b/2129/CH3/EX3.10.14/ex3_10_14.sce new file mode 100755 index 000000000..c5082c03f --- /dev/null +++ b/2129/CH3/EX3.10.14/ex3_10_14.sce @@ -0,0 +1,13 @@ +// Exa 3.10.14
+clc;
+clear;
+close;
+// Given data
+V = 0.25;// in V
+I_o = 1.2;// in µA
+I_o = I_o * 10^-6;// in A
+V_T = 26;// in mV
+V_T = V_T * 10^-3;// in V
+Eta = 1;
+r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T))));// in ohm
+disp(r,"The ac resistance of the diode in ohm is");
diff --git a/2129/CH3/EX3.10.15/ex3_10_15.sce b/2129/CH3/EX3.10.15/ex3_10_15.sce new file mode 100755 index 000000000..fb6f80adc --- /dev/null +++ b/2129/CH3/EX3.10.15/ex3_10_15.sce @@ -0,0 +1,15 @@ +// Exa 3.10.15
+clc;
+clear;
+close;
+// Given data
+t = 4.4 * 10^22;// in total number of atoms/cm^3
+n = 1 * 10^8;// number of impurity
+N_A = t/n;// in atoms/cm^3
+N_A = N_A * 10^6;// in atoms/m^3
+N_D = N_A * 10^3;// in atoms/m^3
+V_T = 26;// in mV
+V_T = V_T * 10^-3;// in V
+n_i = 2.5 * 10^19;// in /cm^3
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"The junction potential in V is")
diff --git a/2129/CH3/EX3.10.16/ex3_10_16.sce b/2129/CH3/EX3.10.16/ex3_10_16.sce new file mode 100755 index 000000000..324fbe8a0 --- /dev/null +++ b/2129/CH3/EX3.10.16/ex3_10_16.sce @@ -0,0 +1,19 @@ +// Exa 3.10.16
+clc;
+clear;
+close;
+// Given data
+Eta = 1;
+I_o = 30;// in MuA
+I_o = I_o * 10^-6;// in A
+v = 0.2;// in V
+K = 1.381 * 10^-23;// in J/degree K
+T = 125;// in °C
+T = T + 273;// in K
+q = 1.6 * 10^-19;// in C
+V_T = (K*T)/q;// in V
+r_f = (Eta * V_T)/(I_o * (%e^(v/(Eta * V_T))));// in ohm
+disp(r_f,"The forward dynamic resistance in ohm is");
+r_f1 = (Eta * V_T)/(I_o * (%e^(-(v)/(Eta * V_T))));// in ohm
+disp(r_f1*10^-3,"The Reverse dynamic resistance in kΩ is");
+
diff --git a/2129/CH3/EX3.10.17/ex3_10_17.sce b/2129/CH3/EX3.10.17/ex3_10_17.sce new file mode 100755 index 000000000..4f2acd747 --- /dev/null +++ b/2129/CH3/EX3.10.17/ex3_10_17.sce @@ -0,0 +1,20 @@ +// Exa 3.10.17
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+N_A = 3 * 10^20;// in /m^3
+A = 1;// in µm^2
+A = A * 10^-6;// in m^2
+V = -10;// in V
+V_J = 0.25;// in V
+V_B = V_J - V;// in V
+epsilon_o = 8.854;// in pF/m
+epsilon_o = epsilon_o * 10^-12;// in F/m
+epsilon_r = 16;
+epsilon = epsilon_o * epsilon_r;
+W = sqrt((V_B * 2 * epsilon)/(q * N_A));// in m
+disp(W*10^6,"The width of depletion layer in µm is");
+C_T = (epsilon * A)/W;// in pF
+disp(C_T*10^12,"the space charge capacitance in pF is");
diff --git a/2129/CH3/EX3.10.18/ex3_10_18.sce b/2129/CH3/EX3.10.18/ex3_10_18.sce new file mode 100755 index 000000000..4d49f63ba --- /dev/null +++ b/2129/CH3/EX3.10.18/ex3_10_18.sce @@ -0,0 +1,15 @@ +// Exa 3.10.18
+clc;
+clear;
+close;
+// Given data
+W = 2 * 10^-4;// in cm
+W = W * 10^-2;// in m
+A = 1;// in mm^2
+A = A * 10^-6;// in m^2
+epsilon_r = 16;
+epsilon_o = 8.854 * 10^-12;// in F/m
+epsilon = epsilon_r * epsilon_o;
+C_T = (epsilon * A)/W;// in F
+disp(C_T*10^12,"The barrier capacitance in pF is");
+
diff --git a/2129/CH3/EX3.10.19/ex3_10_19.sce b/2129/CH3/EX3.10.19/ex3_10_19.sce new file mode 100755 index 000000000..b7e06bc16 --- /dev/null +++ b/2129/CH3/EX3.10.19/ex3_10_19.sce @@ -0,0 +1,26 @@ +// Exa 3.10.19
+clc;
+clear;
+close;
+// Given data
+C_T = 100;// in pF
+C_T=C_T*10^-12;// in F
+epsilon_r = 12;
+epsilon_o = 8.854 * 10^-12;// in F/m
+epsilon = epsilon_r * epsilon_o;
+Rho_p = 5;// in ohm-cm
+Rho_p = Rho_p * 10^-2;// in ohm-m
+V_j = 0.5;// in V
+V = -4.5;// in V
+Mu_p = 500;// in cm^2
+Mu_p = Mu_p * 10^-4;// in m^2
+Sigma_p = 1/Rho_p;// in per ohm-m
+qN_A = Sigma_p/ Mu_p;
+V_B = V_j - V;
+W = sqrt((V_B * 2 * epsilon)/qN_A);// in m
+//C_T = (epsilon * A)/W;
+A = (C_T * W)/ epsilon;// in m
+D = sqrt(A * (4/%pi));// in m
+D = D * 10^3;// in mm
+disp(D,"The diameter in mm is");
+
diff --git a/2129/CH3/EX3.10.2/ex3_10_2.sce b/2129/CH3/EX3.10.2/ex3_10_2.sce new file mode 100755 index 000000000..3d689c7f8 --- /dev/null +++ b/2129/CH3/EX3.10.2/ex3_10_2.sce @@ -0,0 +1,25 @@ +// Exa 3.10.2
+clc;
+clear;
+close;
+// Given data
+V_T = 26;// in mV
+V_T=V_T*10^-3;// in V
+n_i = 2.5 * 10^13;
+Sigma_p = 1;
+Sigma_n = 1;
+Mu_n = 3800;
+q = 1.6 * 10^-19;// in C
+Mu_p = 1800;
+N_A = Sigma_p/(2* q * Mu_p);// in /cm^3
+N_D = Sigma_n /(q * Mu_n);// in /cm^3
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"For Ge the height of the energy barrier in V is");
+// For Si p-n juction
+n_i = 1.5 * 10^10;
+Mu_n = 1300;
+Mu_p = 500;
+N_A = Sigma_p/(2* q * Mu_p);// in /cm^3
+N_D = Sigma_n /(q * Mu_n);// in /cm^3
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"For Si p-n junction the height of the energy barrier in V is");
diff --git a/2129/CH3/EX3.10.20/ex3_10_20.sce b/2129/CH3/EX3.10.20/ex3_10_20.sce new file mode 100755 index 000000000..792f0a758 --- /dev/null +++ b/2129/CH3/EX3.10.20/ex3_10_20.sce @@ -0,0 +1,19 @@ +// Exa 3.10.20
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+Mu_p = 500;// in cm^2/V-sec
+Rho_p = 3.5;// in ohm-cm
+Mu_n = 1500;// in cm^2/V-sec
+Rho_n = 10;// in ohm-cm
+N_A = 1/(Rho_p * Mu_p * q);// in /cm^3
+N_D = 1/(Rho_n * Mu_n * q);// in /cm^3
+V_J = 0.56;// in V
+n_i = 1.5 * 10^10;// in /cm^3
+V_T = V_J/log((N_A * N_D)/(n_i)^2);// in V
+// V_T = T/11600
+T = V_T * 11600;// in K
+T = T - 273;// in °C
+disp(T,"The Temperature of junction in °C is");
diff --git a/2129/CH3/EX3.10.21/ex3_10_21.sce b/2129/CH3/EX3.10.21/ex3_10_21.sce new file mode 100755 index 000000000..b62d41f9c --- /dev/null +++ b/2129/CH3/EX3.10.21/ex3_10_21.sce @@ -0,0 +1,13 @@ +// Exa 3.10.21
+clc;
+clear;
+close;
+// Given data
+V_T = 26;// in mV
+V_T = V_T * 10^-3;// in V
+Eta = 1;
+// I = -90% for Io, so
+IbyIo= 0.1;
+// I = I_o * ((e^(v/(Eta * V_T)))-1)
+V = log(IbyIo) * V_T;// in V
+disp(V,"The reverse bias voltage in volts is");
diff --git a/2129/CH3/EX3.10.22/ex3_10_22.sce b/2129/CH3/EX3.10.22/ex3_10_22.sce new file mode 100755 index 000000000..1172ea187 --- /dev/null +++ b/2129/CH3/EX3.10.22/ex3_10_22.sce @@ -0,0 +1,17 @@ +// Exa 3.10.22
+clc;
+clear;
+close;
+// Given data
+R = 5;// in ohm
+I = 50;// in mA
+I=I*10^-3;// in A
+V = R * I;// in V
+Eta = 1;
+V_T = 26;// in mV
+V_T=V_T*10^-3;// in V
+I_o = I/((%e^(V/(Eta * V_T))) - 1);// in A
+disp(I_o*10^6,"Reverse saturation current in µA is");
+v1 = 0.2;// in V
+r = (Eta * V_T)/(I_o * (%e^(v1/(Eta * V_T))));// in ohm
+disp(r,"Dynamic resistance of the diode in Ω is");
diff --git a/2129/CH3/EX3.10.3/ex3_10_3.sce b/2129/CH3/EX3.10.3/ex3_10_3.sce new file mode 100755 index 000000000..d5c2e72ab --- /dev/null +++ b/2129/CH3/EX3.10.3/ex3_10_3.sce @@ -0,0 +1,32 @@ +//Exa 3.10.3
+clc;
+clear;
+close;
+// Given data
+Eta = 1;
+V_T = 26;// in mV
+V_T= V_T*10^-3;// in V
+// I = I_o * (%e^(V/(Eta*V_T)) - 1) and I = -(0.9) * I_o;
+V= log(1-0.9)*V_T;// in V
+disp(V,"The voltage in volts is : ")
+// Part (ii)
+V1=0.05;// in V
+V2= -0.05;// in V
+ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)
+disp(ratio,"The ratio of the current for a forward bias to reverse bias is : ")
+// Part (iii)
+Io= 10;// in µA
+Io=Io*10^-3;// in mA
+//For
+V=0.1;// in V
+I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
+disp(I,"For v=0.1 V , the value of I in mA is : ")
+//For
+V=0.2;// in V
+I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
+disp(I,"For v=0.2 V , the value of I in mA is : ")
+//For
+V=0.3;// in V
+I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
+disp(I*10^-3,"For v=0.3 V , the value of I in A is : ")
+disp("From three value of I, for small rise in forward voltage, the diode current increase rapidly")
diff --git a/2129/CH3/EX3.10.4/ex3_10_4.sce b/2129/CH3/EX3.10.4/ex3_10_4.sce new file mode 100755 index 000000000..7eee50724 --- /dev/null +++ b/2129/CH3/EX3.10.4/ex3_10_4.sce @@ -0,0 +1,16 @@ +//Exa 3.10.4
+clc;
+clear;
+close;
+// Given data
+// Part (i)
+T1= 25;// in °C
+T2= 80;// in °C
+// Formula Io2= Io1*2^((T2-T1)/10)
+AntiFactor= 2^((T2-T1)/10);
+disp(round(AntiFactor),"Anticipated factor for Ge is : ")
+// Part (ii)
+T1= 25;// in °C
+T2= 150;// in °C
+AntiFactor= 2^((T2-T1)/10);
+disp(round(AntiFactor),"Anticipated factor for Si is : ")
diff --git a/2129/CH3/EX3.10.5/ex3_10_5.sce b/2129/CH3/EX3.10.5/ex3_10_5.sce new file mode 100755 index 000000000..3ad954a37 --- /dev/null +++ b/2129/CH3/EX3.10.5/ex3_10_5.sce @@ -0,0 +1,16 @@ +//Exa 3.10.5
+clc;
+clear;
+close;
+// Given data
+I=5;// in µA
+V=10;// in V
+T1= 0.11;// in °C^-1
+T2= 0.07;// in °C^-1
+// Io+I_R=I (i)
+// dI_by_dT= dIo_by_dT (ii)
+// 1/Io*dIo_by_dT = T1 and 1/I*dI_by_dT = T2, So
+Io= T2*I/T1;// in µA
+I_R= I-Io;// in µA
+R= V/I_R;// in MΩ
+disp(R,"The leakage resistance in MΩ is : ")
diff --git a/2129/CH3/EX3.10.6/ex3_10_6.sce b/2129/CH3/EX3.10.6/ex3_10_6.sce new file mode 100755 index 000000000..13678b746 --- /dev/null +++ b/2129/CH3/EX3.10.6/ex3_10_6.sce @@ -0,0 +1,16 @@ +//Exa 3.10.6
+clc;
+clear;
+close;
+// Given data
+Eta = 1;
+T = 125;// in °C
+T = T + 273;// in K
+V_T = 8.62 * 10^-5 * 398;// in V
+I_o = 30;// in µA
+I_o= I_o*10^-6;// in A
+v = 0.2;// in V
+r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T)));// in ohm
+disp(r_f,"The dynamic resistance in the forward direction in ohm is ");
+r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T)));// in ohm
+disp(r_r*10^-3,"The dynamic resistance in the reverse direction in kohm is");
diff --git a/2129/CH3/EX3.10.7/ex3_10_7.sce b/2129/CH3/EX3.10.7/ex3_10_7.sce new file mode 100755 index 000000000..c576beca2 --- /dev/null +++ b/2129/CH3/EX3.10.7/ex3_10_7.sce @@ -0,0 +1,10 @@ +// Exa 3.10.7
+clc;
+clear;
+close;
+// Given data
+epsilon = 16/(36 * %pi * 10^11);// in F/cm
+A = 1 * 10^-2;
+W = 2 * 10^-4;
+C_T = (epsilon * A)/W;// in F
+disp(C_T*10^12,"The barrier capacitance in pF is");
diff --git a/2129/CH3/EX3.10.8/ex3_10_8.sce b/2129/CH3/EX3.10.8/ex3_10_8.sce new file mode 100755 index 000000000..5ebbf6f80 --- /dev/null +++ b/2129/CH3/EX3.10.8/ex3_10_8.sce @@ -0,0 +1,33 @@ +//Exa 3.10.8
+clc;
+clear;
+close;
+//Given data
+A = 1;// in mm^2
+A = A * 10^-6;// in m^2
+N_A = 3 * 10^20;// in atoms/m^3
+q = 1.6 *10^-19;// in C
+V_o = 0.2;// in V
+epsilon_r=16;
+epsilon_o= 8.854*10^-12;// in F/m
+epsilon=epsilon_r*epsilon_o;
+// Part (a)
+V=-10;// in V
+// V_o - V = 1/2*((q * N_A )/epsilon) * W^2
+W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
+C_T1 = (epsilon * A)/W;// in F
+disp(W*10^6,"The width of the depletion layer for an applied reverse voltage of 10V in µm is ");
+// Part (b)
+V=-0.1;// in V
+W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
+C_T2 = (epsilon * A)/W;// in F
+disp(W*10^6,"The width of the depletion layer for an applied reverse voltage of 0.1V in µm is ");
+// Part (c)
+V=0.1;// in V
+W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
+disp(W*10^6,"The width of the depletion layer for an applied for a forward bias of 0.1V in µm is ");
+// Part (d)
+disp(C_T1*10^12,"The space charge capacitance for an applied reverse voltage of 10V in pF is");
+disp(C_T2*10^12,"The space charge capacitance for an applied reverse voltage of 0.1V in pF is");
+
+
diff --git a/2129/CH3/EX3.10.9/ex3_10_9.sce b/2129/CH3/EX3.10.9/ex3_10_9.sce new file mode 100755 index 000000000..2e60196c4 --- /dev/null +++ b/2129/CH3/EX3.10.9/ex3_10_9.sce @@ -0,0 +1,12 @@ +// Exa 3.10.9
+clc;
+clear;
+close;
+// Given data
+I_o = 1.8 * 10^-9;// A
+v = 0.6;// in V
+Eta = 2;
+V_T = 26;// in mV
+V_T=V_T*10^-3;// in V
+I = I_o *(%e^(v/(Eta * V_T)));// in A
+disp(I*10^3,"The current in the junction in mA is");
|