summaryrefslogtreecommitdiff
path: root/2102/CH2
diff options
context:
space:
mode:
Diffstat (limited to '2102/CH2')
-rwxr-xr-x2102/CH2/EX2.1/exa_2_1.sce18
-rwxr-xr-x2102/CH2/EX2.10/exa_2_10.sce29
-rwxr-xr-x2102/CH2/EX2.11/exa_2_11.sce13
-rwxr-xr-x2102/CH2/EX2.12/exa_2_12.sce18
-rwxr-xr-x2102/CH2/EX2.13/exa_2_13.sce28
-rwxr-xr-x2102/CH2/EX2.14/exa_2_14.sce18
-rwxr-xr-x2102/CH2/EX2.15/exa_2_15.sce24
-rwxr-xr-x2102/CH2/EX2.16/exa_2_16.sce14
-rwxr-xr-x2102/CH2/EX2.17/exa_2_17.sce12
-rwxr-xr-x2102/CH2/EX2.18/exa_2_18.sce28
-rwxr-xr-x2102/CH2/EX2.19/exa_2_19.sce14
-rwxr-xr-x2102/CH2/EX2.2/exa_2_2.sce11
-rwxr-xr-x2102/CH2/EX2.20/exa_2_20.sce14
-rwxr-xr-x2102/CH2/EX2.21/exa_2_21.sce15
-rwxr-xr-x2102/CH2/EX2.22/exa_2_22.sce13
-rwxr-xr-x2102/CH2/EX2.23/exa_2_23.sce11
-rwxr-xr-x2102/CH2/EX2.24/exa_2_24.sce13
-rwxr-xr-x2102/CH2/EX2.25/exa_2_25.sce13
-rwxr-xr-x2102/CH2/EX2.26/exa_2_26.sce13
-rwxr-xr-x2102/CH2/EX2.27/exa_2_27.sce14
-rwxr-xr-x2102/CH2/EX2.28/exa_2_28.sce14
-rwxr-xr-x2102/CH2/EX2.29/exa_2_29.sce11
-rwxr-xr-x2102/CH2/EX2.3/exa_2_3.sce12
-rwxr-xr-x2102/CH2/EX2.30/exa_2_30.sce27
-rwxr-xr-x2102/CH2/EX2.31/exa_2_31.sce16
-rwxr-xr-x2102/CH2/EX2.32/exa_2_32.sce18
-rwxr-xr-x2102/CH2/EX2.33/exa_2_33.sce28
-rwxr-xr-x2102/CH2/EX2.34/exa_2_34.sce17
-rwxr-xr-x2102/CH2/EX2.35/exa_2_35.sce12
-rwxr-xr-x2102/CH2/EX2.36/exa_2_36.sce10
-rwxr-xr-x2102/CH2/EX2.37/exa_2_37.sce14
-rwxr-xr-x2102/CH2/EX2.38/exa_2_38.sce13
-rwxr-xr-x2102/CH2/EX2.39/exa_2_39.sce15
-rwxr-xr-x2102/CH2/EX2.4/exa_2_4.sce13
-rwxr-xr-x2102/CH2/EX2.40/exa_2_40.sce12
-rwxr-xr-x2102/CH2/EX2.5/exa_2_5.sce10
-rwxr-xr-x2102/CH2/EX2.6/exa_2_6.sce27
-rwxr-xr-x2102/CH2/EX2.7/exa_2_7.sce16
-rwxr-xr-x2102/CH2/EX2.8/exa_2_8.sce19
-rwxr-xr-x2102/CH2/EX2.9/exa_2_9.sce11
40 files changed, 648 insertions, 0 deletions
diff --git a/2102/CH2/EX2.1/exa_2_1.sce b/2102/CH2/EX2.1/exa_2_1.sce
new file mode 100755
index 000000000..9502023ba
--- /dev/null
+++ b/2102/CH2/EX2.1/exa_2_1.sce
@@ -0,0 +1,18 @@
+// Exa 2.1
+clc;
+clear;
+close;
+// Given data
+miu= 0.3;// in m^2/vs
+V= 50;// in mV
+V=V*10^-3;// in V
+d=0.4;// in mm
+d=d*10^-3;// in m
+// Part (a)
+// miu= vd/E and vd= miu*E, so
+vd= miu*V/d;// in m/s
+disp(vd,"Drift velocity in m/s is : ")
+
+// Part (b)
+T= d/vd;// in sec
+disp(T*10^6,"Time required for an electron to move in µs is :")
diff --git a/2102/CH2/EX2.10/exa_2_10.sce b/2102/CH2/EX2.10/exa_2_10.sce
new file mode 100755
index 000000000..5a31e9fe5
--- /dev/null
+++ b/2102/CH2/EX2.10/exa_2_10.sce
@@ -0,0 +1,29 @@
+// Exa 2.10
+clc;
+clear;
+close;
+// Given data
+ni= 1.8*10^15;// in /m^3
+rho= 2*10^5;// in Ωm
+q=1.6*10^-19;// in C
+dopingConcentration= 10^25;// in /m^3
+n=dopingConcentration;
+MCC= ni^2/dopingConcentration; // Minority carrier concentration per cube meter
+miu_n= 1/(2*rho*q*ni);// in m^3/Vs
+disp(miu_n,"The value of µn in m^3/Vs is : ")
+
+// Part (b)
+sigma= q*n*miu_n;//in (Ωm)^-1
+rho= 1/sigma;// in Ωm
+disp(rho,"Resistivity in Ωm is : ")
+
+// Part(c)
+kT= 26*10^-3;//in V
+no= n;// in /m^3
+Shift_inFermiLevel= kT*log(no/ni);// in eV
+disp(Shift_inFermiLevel,"Shift in Fermi level due to doping in eV is :")
+disp("Hence, E_F lies "+string(Shift_inFermiLevel)+" eV above Fermi level Ei")
+
+// Part (d)
+MCC= ni^2/dopingConcentration; // Minority carrier concentration per cube meter
+disp(MCC,"Minority carrier concentration per cube meter when its temperature is increased is : ")
diff --git a/2102/CH2/EX2.11/exa_2_11.sce b/2102/CH2/EX2.11/exa_2_11.sce
new file mode 100755
index 000000000..9aad4e45a
--- /dev/null
+++ b/2102/CH2/EX2.11/exa_2_11.sce
@@ -0,0 +1,13 @@
+// Exa 2.11
+clc;
+clear;
+close;
+// Given data
+miu_n= 1700;//in cm^2/Vs
+miu_p= 560;//in cm^2/Vs
+ni= 2.5*10^10;// in /cm^3
+q=1.6*10^-19;// in C
+sigma= q*ni*(miu_n+miu_p);//in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(sigma,"Conductivity of intrinsic sample in (Ωcm)^-1 is : ")
+disp(rho,"Resistivity of intrinsic sample in Ωcm")
diff --git a/2102/CH2/EX2.12/exa_2_12.sce b/2102/CH2/EX2.12/exa_2_12.sce
new file mode 100755
index 000000000..aa63fac3c
--- /dev/null
+++ b/2102/CH2/EX2.12/exa_2_12.sce
@@ -0,0 +1,18 @@
+// Exa 2.12
+clc;
+clear;
+close;
+// Given data
+ni= 1.45*10^10;// in /cm^3
+q=1.6*10^-19;// in C
+miu_n= 1300;// in cm^2/Vs
+density= 5*10^22;// density of silicon atom in /cm^3
+N_D= density/10^12;
+n=N_D;
+// n*p= ni^2
+p= ni^2/n;//in /cm^3
+sigma= q*n*miu_n;// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of silicon in Ωcm is : ")
+
+// Note: The value of n is putted wrong (5*10^14 at place of 5*10^10) to evaluate the value of sigma. So the answer in the book is wrong .
diff --git a/2102/CH2/EX2.13/exa_2_13.sce b/2102/CH2/EX2.13/exa_2_13.sce
new file mode 100755
index 000000000..3ff50a74d
--- /dev/null
+++ b/2102/CH2/EX2.13/exa_2_13.sce
@@ -0,0 +1,28 @@
+// Exa 2.13
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+rho=75;//in Ωcm
+N_D= 10^13;// in /cm^3
+N_A= 5*10^12;//in /cm^3
+E=3;// in V/cm
+ni= 2.7*10^12;// in /cm^3
+sigma= 1/rho;// in (Ωcm)^-1
+// miu_p/miu_n= 1/3 or miu_n=3*miu_p
+// sigma= q*ni*(miu_n+miu_p) = q*ni*(3*miu_p+miu_p) = q*ni*(4*miu_p)
+miu_p= sigma/(q*ni*4);
+miu_n= 3*miu_p;
+// n+N_A= p+N_D or n= p+N_D-N_A
+// n*p= ni^2 or (p+N_D-N_A)*p= ni^2
+// p^2 + (N_D-N_A)*p-ni^2 =0
+// values= [1 (N_D-N_A) -ni^2];
+p = roots([1 5*10^12 -7.29*10^24])
+p=p(2);//discarding -ve value
+n=p+N_D-N_A;
+I= q*(n*miu_n+p*miu_p)*E// in A/m^2
+disp(I,"The total conduction current in A/m^2 is : ")
+
+// Note: There is some difference between book answer and coding. The reson behind this is that
+// The value of P is evaluated 1.8*10^12 while accurate value is 1.179674*10^12
diff --git a/2102/CH2/EX2.14/exa_2_14.sce b/2102/CH2/EX2.14/exa_2_14.sce
new file mode 100755
index 000000000..d868c9cff
--- /dev/null
+++ b/2102/CH2/EX2.14/exa_2_14.sce
@@ -0,0 +1,18 @@
+// Exa 2.14
+clc;
+clear;
+close;
+// Given data
+N_D= 10^20;// in /cm^3
+ni= 2.5*10^12;// in /cm^3
+kT=26;// in meV
+kT=kT*10^-3;// in eV
+n= N_D;// as N_D>>ni
+p= ni^2/n;//in /cm^3
+disp(p,"The minority carrier concentration per cm^3 is :")
+
+// Part (b)
+LocationOfFermiLevel= kT*log(N_D/ni);// in eV
+disp("The Fermi Level will be "+string(LocationOfFermiLevel)+" eV above Fermi level")
+
+//Note: The value of Minority carrier concentration of part(a) is calculated wrong because the value of (2.5*10^12)^2/(10^20) will be 62500 not 2.5*10^4
diff --git a/2102/CH2/EX2.15/exa_2_15.sce b/2102/CH2/EX2.15/exa_2_15.sce
new file mode 100755
index 000000000..0f7ed4d8f
--- /dev/null
+++ b/2102/CH2/EX2.15/exa_2_15.sce
@@ -0,0 +1,24 @@
+// Exa 2.15
+clc;
+clear;
+close;
+// Given data
+miu_n= 1300;// in cm^2/Vs
+q=1.6*10^-19;// in C
+ni= 4.3*10^-6;// in /cm^3
+V= 1;// in volt
+L=8;// in cm
+A=0.8*0.8;// in cm^2
+I=4*10^-3;// in A
+// R= rho*L/A = V/I
+R= V/I;// in Ω
+sigma= L/(R*A);// in (Ωcm)^-1
+// sigma= q*n*miu_n
+n= sigma/(q*miu_n);
+N_D= n;
+disp(N_D,"The value of N_D is :")
+// Part (b)
+d=L;
+E= V/d;
+vd=miu_n*E;// in cm/s
+disp(vd,"Drift velocity in cm/s is : ")
diff --git a/2102/CH2/EX2.16/exa_2_16.sce b/2102/CH2/EX2.16/exa_2_16.sce
new file mode 100755
index 000000000..891579fc8
--- /dev/null
+++ b/2102/CH2/EX2.16/exa_2_16.sce
@@ -0,0 +1,14 @@
+// Exa 2.16
+clc;
+clear;
+close;
+// Given data
+E= 1;//in v/m
+miu= 32*10^-4;// in m^2/Vs
+m= 9.1*10^-28;// in gram
+m=m*10^-3;// in kg
+q=1.6*10^-19;// in C
+toh_r= 2*miu*m/q;// in sec
+Vd= miu*E;// in m/sec
+disp(toh_r,"The relaxation time in sec is :")
+disp(Vd*10^2,"Drift velocity in cm/sec is :")
diff --git a/2102/CH2/EX2.17/exa_2_17.sce b/2102/CH2/EX2.17/exa_2_17.sce
new file mode 100755
index 000000000..9fa132acf
--- /dev/null
+++ b/2102/CH2/EX2.17/exa_2_17.sce
@@ -0,0 +1,12 @@
+// Exa 2.17
+clc;
+clear;
+close;
+// Given data
+miu_n= 0.145;// in m^2/Vs
+miu_p= 0.05;// in m^2/Vs
+q=1.6*10^-19;// in C
+n=10^15;// per m^3
+p=10^2;// per m^3
+rho= 1/(q*(n*miu_n+p*miu_p));// in Ωm
+disp(rho,"The resistivity in Ωm is :")
diff --git a/2102/CH2/EX2.18/exa_2_18.sce b/2102/CH2/EX2.18/exa_2_18.sce
new file mode 100755
index 000000000..48c2e1c62
--- /dev/null
+++ b/2102/CH2/EX2.18/exa_2_18.sce
@@ -0,0 +1,28 @@
+// Exa 2.18
+clc;
+clear;
+close;
+// Given data
+miu_n= 0.13;// in m^2/Vs
+miu_p= 0.05;// in m^2/Vs
+q=1.6*10^-19;// in C
+ni=1.5*10^16;// per m^3
+sigma_intrinsic= q*ni*(miu_n+miu_p);// in (Ωm)^-1
+disp(sigma_intrinsic,"The conductivity of silicon in Intrinsic condition in (Ωm)^-1 is : ")
+
+// Part (b)
+n= 5*10^28/10^9;
+sigma= q*n*miu_n;// in (Ωm)^-1
+disp(sigma,"The conductivity with donar impurity in (Ωm)^-1 is : ")
+
+// Part (c)
+p= 5*10^28/10^8;
+sigma= q*p*miu_p;// in (Ωm)^-1
+disp(sigma,"The conductivity with acceptor impurity in (Ωm)^-1 is : ")
+
+// Part (d)
+p_desh= p-n;// in /m^3
+sigma= q*p_desh*miu_p;// in (Ωm)^-1
+disp(sigma,"The conductivity with donar and acceptor impurity in (Ωm)^-1 is : ")
+
+// Note : Answer in the book of part (a) may be miss printed or wrong
diff --git a/2102/CH2/EX2.19/exa_2_19.sce b/2102/CH2/EX2.19/exa_2_19.sce
new file mode 100755
index 000000000..d9d67f6ab
--- /dev/null
+++ b/2102/CH2/EX2.19/exa_2_19.sce
@@ -0,0 +1,14 @@
+// Exa 2.19
+clc;
+clear;
+close;
+// Given data
+rho= 1.2;// in Ωm
+miu_n= 0.14;// in m^2/Vs
+q=1.6*10^-19;// in C
+ni= 1.8*10^16;// per m^3
+// sigma = 1/rho = q*n*miu_n
+n= 1/(rho*q*miu_n);// per m^3
+p= ni^2/n;// per m^3
+disp(n,"The value of n in per m^3 is :")
+disp(p,"The value of p in per m^3 is :")
diff --git a/2102/CH2/EX2.2/exa_2_2.sce b/2102/CH2/EX2.2/exa_2_2.sce
new file mode 100755
index 000000000..96aba4bf1
--- /dev/null
+++ b/2102/CH2/EX2.2/exa_2_2.sce
@@ -0,0 +1,11 @@
+// Exa 2.2
+clc;
+clear;
+close;
+// Given data
+miu_n= 0.36;// in m^2/vs
+miu_p= 0.17;// in m^2/vs
+ni= 2.9*10^19;// in /m^3
+q=1.6*10^-19;// in C
+sigma_i= q*ni*(miu_n+miu_p);// in (Ωm)^-1
+disp(sigma_i,"Intrinsic conductivity of Ge in (Ωm)^-1 is :")
diff --git a/2102/CH2/EX2.20/exa_2_20.sce b/2102/CH2/EX2.20/exa_2_20.sce
new file mode 100755
index 000000000..99a41ef76
--- /dev/null
+++ b/2102/CH2/EX2.20/exa_2_20.sce
@@ -0,0 +1,14 @@
+// Exa 2.20
+clc;
+clear;
+close;
+// Given data
+N_D= 5*10^22/10^8;
+q=1.6*10^-19;// in C
+ni= 1.45*10^10;// per m^3
+miu_n= 1300;// in m^2/Vs
+// n*p= ni^2 or N_D*p = ni^2
+p= ni^2/N_D;// in /cm^3
+sigma= q*miu_n*N_D;// in (Ωcm)^-1
+rho= 1/sigma;//in Ωcm
+disp(rho,"Resistivity in Ωcm is : ")
diff --git a/2102/CH2/EX2.21/exa_2_21.sce b/2102/CH2/EX2.21/exa_2_21.sce
new file mode 100755
index 000000000..dcdfe941d
--- /dev/null
+++ b/2102/CH2/EX2.21/exa_2_21.sce
@@ -0,0 +1,15 @@
+// Exa 2.21
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+n=8.4*10^28;
+rho= 6.51;// in Ω/1000ft
+rho= rho/(3.05*10^4);// in Ω/cm
+sigma= 1/rho;// in mho/cm
+sigma=sigma*10^2;// in mho/m
+// sigma= n*q*miu
+miu= sigma/(n*q);// in m^2/v-s
+disp(sigma,"Conductivity in mho/m is : ")
+disp(miu,"Mobility in m^2/v-s is : ")
diff --git a/2102/CH2/EX2.22/exa_2_22.sce b/2102/CH2/EX2.22/exa_2_22.sce
new file mode 100755
index 000000000..1c72c778b
--- /dev/null
+++ b/2102/CH2/EX2.22/exa_2_22.sce
@@ -0,0 +1,13 @@
+// Exa 2.22
+clc;
+clear;
+close;
+// Given data
+miu_n= 1350;// in cm^2/v-sec
+miu_p= 480;// in cm^2/v-sec
+ni=1.52*10^10;// in /cm^3
+q=1.6*10^-19;// in C
+sigma= q*ni*(miu_n+miu_p);// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(sigma,"Conductivity in (Ωcm)^-1 is : ")
+disp(rho,"Resistivity in Ωcm is : ")
diff --git a/2102/CH2/EX2.23/exa_2_23.sce b/2102/CH2/EX2.23/exa_2_23.sce
new file mode 100755
index 000000000..a872c06b5
--- /dev/null
+++ b/2102/CH2/EX2.23/exa_2_23.sce
@@ -0,0 +1,11 @@
+// Exa 2.23
+clc;
+clear;
+close;
+// Given data
+ni=2.5*10^19;// in /m^3
+miu_n= 0.38;// in m^2/v-sec
+miu_p= 0.18;// in m^2/v-sec
+q=1.6*10^-19;// in C
+sigma= q*ni*(miu_n+miu_p);// in (Ωm)^-1
+disp(sigma,"Conductivity in (Ωm)^-1 is : ")
diff --git a/2102/CH2/EX2.24/exa_2_24.sce b/2102/CH2/EX2.24/exa_2_24.sce
new file mode 100755
index 000000000..030026882
--- /dev/null
+++ b/2102/CH2/EX2.24/exa_2_24.sce
@@ -0,0 +1,13 @@
+// Exa 2.24
+clc;
+clear;
+close;
+// Given data
+rho= 0.5;// in
+miu_n= 0.39;// in m^2/v-sec
+miu_p= 0.19;// in m^2/v-sec
+q=1.6*10^-19;// in C
+sigma= 1/rho;// in (Ωm)^-1
+// Formula sigma= q*ni*(miu_n+miu_p)
+ni= sigma/(q*(miu_n+miu_p));// in /m^3
+disp(ni,"The intrinsic carrier concentration of germanium in /m^3 is : ")
diff --git a/2102/CH2/EX2.25/exa_2_25.sce b/2102/CH2/EX2.25/exa_2_25.sce
new file mode 100755
index 000000000..fb21807bf
--- /dev/null
+++ b/2102/CH2/EX2.25/exa_2_25.sce
@@ -0,0 +1,13 @@
+// Exa 2.25
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+miu_n= 0.18;// in m^2/v-s
+N_D= 10^21;// per m^3
+N_A= 5*10^20;// per m^3
+N_deshD= N_D-N_A;// per m^3
+n=N_deshD;// per m^3
+sigma= q*n*miu_n;// in (Ωm)^-1
+disp(sigma,"Conductivity of the silicon sample in (Ωm)^-1 is : ")
diff --git a/2102/CH2/EX2.26/exa_2_26.sce b/2102/CH2/EX2.26/exa_2_26.sce
new file mode 100755
index 000000000..778f3c8ca
--- /dev/null
+++ b/2102/CH2/EX2.26/exa_2_26.sce
@@ -0,0 +1,13 @@
+// Exa 2.26
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+miu_n= 0.36;// in m^2/v-s
+miu_p= 0.17;// in m^2/v-s
+ni= 2.5*10^19;// per m^3
+sigma= q*ni*(miu_n+miu_p);// in s/m
+rho= 1/sigma;// in Ωm
+disp(sigma,"Conductivity of Ge in s/m is : ")
+disp(rho,"Resistivity in Ωm is : ")
diff --git a/2102/CH2/EX2.27/exa_2_27.sce b/2102/CH2/EX2.27/exa_2_27.sce
new file mode 100755
index 000000000..2c57a9324
--- /dev/null
+++ b/2102/CH2/EX2.27/exa_2_27.sce
@@ -0,0 +1,14 @@
+// Exa 2.27
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+miu_n= 0.13;// in m^2/v-s
+miu_p= 0.05;// in m^2/v-s
+N_D= 5*10^28/(2*10^8);// per m^3
+n=N_D;// per m^3
+ni= 1.5*10^16;// per m^3
+p= ni^2/N_D;// per m^3
+sigma= e*(n*miu_n+p*miu_p);// in s/m
+disp(sigma,"Conductivity of the intrinsic semiconductor in s/m is ")
diff --git a/2102/CH2/EX2.28/exa_2_28.sce b/2102/CH2/EX2.28/exa_2_28.sce
new file mode 100755
index 000000000..5a7d0ceca
--- /dev/null
+++ b/2102/CH2/EX2.28/exa_2_28.sce
@@ -0,0 +1,14 @@
+// Exa 2.28
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+Eg= 0.72;// in eV
+Ef= Eg/2;//in eV
+K= 8.61*10^-5;// in eV/K
+T=300;//in K
+nc= 1;
+n= 1+%e^((Eg-Ef)/(K*T));
+ncBYn= nc/n;
+disp(ncBYn,"The fraction of the total number or electrons is : ")
diff --git a/2102/CH2/EX2.29/exa_2_29.sce b/2102/CH2/EX2.29/exa_2_29.sce
new file mode 100755
index 000000000..663649609
--- /dev/null
+++ b/2102/CH2/EX2.29/exa_2_29.sce
@@ -0,0 +1,11 @@
+// Exa 2.29
+clc;
+clear;
+close;
+// Given data
+N_D= 1.4*10^24;// per m^3
+ni= 1.4*10^18;// per m^3
+n=N_D;//per m^3
+p=ni^2/n;// per m^3
+R= n/p;// ratio of electron to holes concentration
+disp(R,"Ratio of electron to holes concentraiton is : ")
diff --git a/2102/CH2/EX2.3/exa_2_3.sce b/2102/CH2/EX2.3/exa_2_3.sce
new file mode 100755
index 000000000..3747ce823
--- /dev/null
+++ b/2102/CH2/EX2.3/exa_2_3.sce
@@ -0,0 +1,12 @@
+// Exa 2.3
+clc;
+clear;
+close;
+// Given data
+rho= 0.60;// in Ωm
+q=1.6*10^-19;// in C
+miu_n= 0.38;// in m^2/vs
+miu_p= 0.18;// in m^2/vs
+sigma= 1/rho;// in (Ωm)^-1
+ni= sigma/(q*(miu_n+miu_p));// in /m^3
+disp(ni,"The intrinsic carrier concentration per meter cube is :")
diff --git a/2102/CH2/EX2.30/exa_2_30.sce b/2102/CH2/EX2.30/exa_2_30.sce
new file mode 100755
index 000000000..7217bd464
--- /dev/null
+++ b/2102/CH2/EX2.30/exa_2_30.sce
@@ -0,0 +1,27 @@
+// Exa 2.30
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+miu_e= 0.0032;// in m^2/v-s
+sigma= 5.8*10^7;// in s/m
+E= 20*10^-3;// in V/m
+d=0.002;// in m
+Area= %pi*d^2/4;// in m^2
+
+// Part (a)
+n= sigma/(e*miu_e);// per m^3
+disp(n,"The charge density per meter cube is : ")
+
+// Part (b)
+J= sigma*E;// in A/m^2
+disp(J,"Current density in A/m^2 is : ")
+
+// Part (c)
+I= J*Area;// in A
+disp(I,"Current flowing in the wire in ampere is : ")
+
+// Part (d)
+v=miu_e*E;// in m/sec
+disp(v,"Electron drift velocity in m/sec is : ")
diff --git a/2102/CH2/EX2.31/exa_2_31.sce b/2102/CH2/EX2.31/exa_2_31.sce
new file mode 100755
index 000000000..5164fe7f5
--- /dev/null
+++ b/2102/CH2/EX2.31/exa_2_31.sce
@@ -0,0 +1,16 @@
+// Exa 2.31
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+rho= 0.5;// in Ω-m
+miu_c= 0.4;// in m^2/v-sec
+J=100;//in A/m^2
+distance=10;// µm
+distance=distance*10^-6;//in sec
+// V= miu_c*E = miu_c*J/sigma = miu_c*J*rho
+V= miu_c*J*rho ;// in m/sec
+disp(V,"Drift velocity in m/sec is : ")
+T= distance/V;// in second
+disp(T,"The time taken by the electron to travel 10 micro meter in the crystal in second is : ")
diff --git a/2102/CH2/EX2.32/exa_2_32.sce b/2102/CH2/EX2.32/exa_2_32.sce
new file mode 100755
index 000000000..541ae3b19
--- /dev/null
+++ b/2102/CH2/EX2.32/exa_2_32.sce
@@ -0,0 +1,18 @@
+// Exa 2.32
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+miu_e= 3800;// in cm v-s
+miu_p= 1800;// in cm v-s
+ni= 2.5*10^13;// per cm^3
+N_D= 4.4*10^22*10^-7;// per cm^3
+n=N_D;// per cm^3
+p= ni^2/N_D;// holes/cm^3
+sigma_i= ni*e*(miu_e+miu_p);// in (Ωcm)^-1
+sigma_n= e*N_D*miu_e;// in (Ωcm)^-1
+disp(sigma_i,"Intrinsic conductivity in (Ωcm)^-1 is : ")
+disp(n,"Concentration of electrons per cm^3 is : ")
+disp(p,"Concentration of holes per cm^3 is : ")
+disp(sigma_n,"The conductivity in n-type Ge semiconductor in (Ωcm)^-1 is : ")
diff --git a/2102/CH2/EX2.33/exa_2_33.sce b/2102/CH2/EX2.33/exa_2_33.sce
new file mode 100755
index 000000000..ef9c25d87
--- /dev/null
+++ b/2102/CH2/EX2.33/exa_2_33.sce
@@ -0,0 +1,28 @@
+// Exa 2.33
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+a= 0.004*0.0015;// in m^2
+ni= 2.5*10^19;// per m^3
+miu_e= 0.38;// in m^2/ v-s
+miu_p= 0.18;// in m^2/v-s
+V=10;// in V
+i= 25;// in mm
+i=i*10^-3;// in m
+E= V/i;// in V/m
+// Part (a)
+ve= miu_e*E;// in m/sec
+disp(ve,"Electric drift velocity in m/sec is : ")
+vp= miu_p*E;// in m/sec
+disp(vp,"Hole drift velocity in m/sec is : ")
+
+// Part (b)
+sigma_i= ni*e*(miu_e+miu_p);// in (Ωcm)^-1
+disp(sigma_i,"Intrinsic carrier conductivity of Ge in (Ωcm)^-1 is : ")
+
+// Part (c)
+I= sigma_i*E*a;// in A
+I=I*10^3;// in mA
+disp(I,"Total current in mA is : ")
diff --git a/2102/CH2/EX2.34/exa_2_34.sce b/2102/CH2/EX2.34/exa_2_34.sce
new file mode 100755
index 000000000..17105d6e8
--- /dev/null
+++ b/2102/CH2/EX2.34/exa_2_34.sce
@@ -0,0 +1,17 @@
+// Exa 2.34
+clc;
+clear;
+close;
+// Given data
+miu_e= 0.14;// in m^2/ v-s
+miu_p= 0.05;// in m^2/v-s
+e=1.6*10^-19;// in C
+N=3*10^25;// per m^3
+Eg= 1.1;// in eV
+Eg= Eg*1.602*10^-19;// in J
+k= 1.38*10^-23;// in J/K
+T=300;// in K
+ni= N*%e^(-Eg/(2*k*T));// in /m^3
+sigma= ni*e*(miu_e+miu_p);// in s/m
+disp(ni,"The intrinsic carrier concentration in Si in /m^3 is : ")
+disp(sigma,"Conductivity of Si in s/m is : ")
diff --git a/2102/CH2/EX2.35/exa_2_35.sce b/2102/CH2/EX2.35/exa_2_35.sce
new file mode 100755
index 000000000..061c0dab8
--- /dev/null
+++ b/2102/CH2/EX2.35/exa_2_35.sce
@@ -0,0 +1,12 @@
+// Exa 2.35
+clc;
+clear;
+close;
+// Given data
+N_A= 4.4*10^22/10^8;// in /m^3
+N_D= 10^3*N_A;// in /m^3
+ni= 2.5*10^13;// /cm^3
+Vt= 26;// in mV
+Vt= Vt*10^-3;// in V
+Vj= Vt*log(N_A*N_D/ni^2);// in V
+disp(Vj,"The junction potential in volts is : ")
diff --git a/2102/CH2/EX2.36/exa_2_36.sce b/2102/CH2/EX2.36/exa_2_36.sce
new file mode 100755
index 000000000..9c3d09879
--- /dev/null
+++ b/2102/CH2/EX2.36/exa_2_36.sce
@@ -0,0 +1,10 @@
+// Exa 2.36
+clc;
+clear;
+close;
+// Given data
+I_o= 0.3;// in µA
+I_o= I_o*10^-6;// in A
+V_F= 0.15;// in V
+I= I_o*%e^(40*V_F);// in A
+disp(I*10^6,"Current flowing in the diode in µA is : ")
diff --git a/2102/CH2/EX2.37/exa_2_37.sce b/2102/CH2/EX2.37/exa_2_37.sce
new file mode 100755
index 000000000..273e63f7b
--- /dev/null
+++ b/2102/CH2/EX2.37/exa_2_37.sce
@@ -0,0 +1,14 @@
+// Exa 2.37
+clc;
+clear;
+close;
+// Given data
+format('v',11)
+Io= 1;// in nA
+Io= Io*10^-9;// in A
+T= 27+273;//in K
+V_T= T/11600;// in V
+V_F= 0.3;// in V
+n=1;
+I_F= Io*[%e^(V_F/(n*V_T))-1];// in A
+disp(I_F,"The forward current of diode in ampere is : ")
diff --git a/2102/CH2/EX2.38/exa_2_38.sce b/2102/CH2/EX2.38/exa_2_38.sce
new file mode 100755
index 000000000..d0f32403b
--- /dev/null
+++ b/2102/CH2/EX2.38/exa_2_38.sce
@@ -0,0 +1,13 @@
+// Exa 2.38
+clc;
+clear;
+close;
+// Given data
+format('v',11)
+I_F= 2;// in mA
+I_F= I_F*10^-3;// in A
+V_T= 25;// in mV
+V_T=V_T*10^-3;// in V
+n=1;
+r_F= n*V_T/I_F;// in Ω
+disp(r_F,"The dynamic resistance of a Ge p-n junction diode in Ω is : ")
diff --git a/2102/CH2/EX2.39/exa_2_39.sce b/2102/CH2/EX2.39/exa_2_39.sce
new file mode 100755
index 000000000..8ef9e2020
--- /dev/null
+++ b/2102/CH2/EX2.39/exa_2_39.sce
@@ -0,0 +1,15 @@
+// Exa 2.39
+clc;
+clear;
+close;
+// Given data
+T=300;// in K
+n=1;
+V_T= 26;// in mV
+V_T=V_T*10^-3;// in V
+V_F= 200;// in mV
+V_F=V_F*10^-3;// in V
+Io= 1;// in µA
+Io= Io*10^-6;// in A
+r_F= n*V_T/(Io*%e^(V_F/(n*V_T)));// in Ω
+disp(r_F,"The ac resistance of a semiconductor diode in Ω")
diff --git a/2102/CH2/EX2.4/exa_2_4.sce b/2102/CH2/EX2.4/exa_2_4.sce
new file mode 100755
index 000000000..19ef153db
--- /dev/null
+++ b/2102/CH2/EX2.4/exa_2_4.sce
@@ -0,0 +1,13 @@
+// Exa 2.4
+clc;
+clear;
+close;
+// Given data
+N_D= 10^21;// in /m^3
+N_A= 2*10^20;// in /m^3
+miu_n= 0.15;// in m^2/vs
+N_DeshD= N_D-N_A;// in /m^3
+n=N_DeshD;// in /m^3
+q=1.6*10^-19;// in C
+sigma= q*n*miu_n;// in (Ωm)^-1
+disp(sigma,"Conductivity of silicon in (Ωm)^-1 is : ")
diff --git a/2102/CH2/EX2.40/exa_2_40.sce b/2102/CH2/EX2.40/exa_2_40.sce
new file mode 100755
index 000000000..9c3eb03d5
--- /dev/null
+++ b/2102/CH2/EX2.40/exa_2_40.sce
@@ -0,0 +1,12 @@
+// Exa 2.40
+clc;
+clear;
+close;
+// Given data
+n=2;
+V_T= 26;// in mV
+V_T=V_T*10^-3;// in V
+I= 1;// in mA
+I= I*10^-3;// in A
+r= n*V_T/I;// in Ω
+disp(r,"The magnitude of r in Ω is : ")
diff --git a/2102/CH2/EX2.5/exa_2_5.sce b/2102/CH2/EX2.5/exa_2_5.sce
new file mode 100755
index 000000000..9da27d322
--- /dev/null
+++ b/2102/CH2/EX2.5/exa_2_5.sce
@@ -0,0 +1,10 @@
+// Exa 2.5
+clc;
+clear;
+close;
+// Given data
+n=6.023*10^23*7.4/63.54;
+miu= 32.6;// in cm^2/Vs
+q=1.6*10^-19;// in C
+sigma= n*q*miu;// in (Ωcm)^-1
+disp(sigma,"Conductivity of copper in (Ωcm)^-1 is : ")
diff --git a/2102/CH2/EX2.6/exa_2_6.sce b/2102/CH2/EX2.6/exa_2_6.sce
new file mode 100755
index 000000000..6a573f450
--- /dev/null
+++ b/2102/CH2/EX2.6/exa_2_6.sce
@@ -0,0 +1,27 @@
+// Exa 2.6
+clc;
+clear;
+close;
+// Given data
+// For silicon
+q=1.6*10^-19;// in C
+ni= 2.5*10^12;// in /cm^3
+miu_n= 1700;// in cm^2/Vs
+miu_p= 600;// in cm^2/Vs
+sigma= 0.2;// in (Ωm)^-1
+// Formula sigma= q*n*miu_n
+n= sigma/(q*miu_n);// in /cm^3
+p= ni^2/n;// in /cm^3
+disp("For silicon")
+disp(n,"Concentration of electron in /cm^3 is : ")
+disp(p,"Concentration of holes in /cm^3 is : ")
+// For germanium
+ni= 3.4*10^15;// in /cm^3
+miu_n= 3600;// in cm^2/Vs
+miu_p= 1600;// in cm^2/Vs
+sigma= 150;// in (Ωm)^-1
+p= sigma/(q*miu_p);// in /cm^3
+n= ni^2/p;// in /cm^3
+disp("For germanium")
+disp(n,"Concentration of electron in /cm^3 is : ")
+disp(p,"Concentration of holes in /cm^3 is : ")
diff --git a/2102/CH2/EX2.7/exa_2_7.sce b/2102/CH2/EX2.7/exa_2_7.sce
new file mode 100755
index 000000000..ff2c6c48c
--- /dev/null
+++ b/2102/CH2/EX2.7/exa_2_7.sce
@@ -0,0 +1,16 @@
+// Exa 2.7
+clc;
+clear;
+close;
+// Given data
+miu_n= 3900;// in cm^2/Vs
+miu_p= 1900;// in cm^2/Vs
+ni= 2.5*10^10;// in /cm^3
+Nge= 4.41*10^22;// in /cm^3
+q=1.6*10^-19;// in C
+N_D= Nge/10^8;// in /cm^3
+n=N_D;// approx
+p= ni^2/N_D;// in /cm^2
+sigma= q*n*miu_n;// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of the doped germanium in Ωcm is : ")
diff --git a/2102/CH2/EX2.8/exa_2_8.sce b/2102/CH2/EX2.8/exa_2_8.sce
new file mode 100755
index 000000000..af3a663ee
--- /dev/null
+++ b/2102/CH2/EX2.8/exa_2_8.sce
@@ -0,0 +1,19 @@
+// Exa 2.8
+clc;
+clear;
+close;
+// Given data
+Nsi = 4.9*10^22;// in /cm^3
+ni= 2.5*10^12;// in /cm^3
+q=1.6*10^-19;// in C
+miu_n= 1600;// in cm^2/Vs
+miu_p= 400;// in cm^2/Vs
+N_D= Nsi/(100*10^6);
+sigma= q*ni*(miu_n+miu_p);// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of silicon in Ωcm is :")
+n=N_D;// approx
+p= ni^2/n;// in /cm^3
+sigma= q*n*miu_n;// in (Ωcm)-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of doped silicon in Ωcm is :")
diff --git a/2102/CH2/EX2.9/exa_2_9.sce b/2102/CH2/EX2.9/exa_2_9.sce
new file mode 100755
index 000000000..955ef690e
--- /dev/null
+++ b/2102/CH2/EX2.9/exa_2_9.sce
@@ -0,0 +1,11 @@
+// Exa 2.9
+clc;
+clear;
+close;
+// Given data
+N_D= 5*10^28/(20*10^6);// in /m^3
+// For the Fermi level
+// E_F= E_C if N_C= N_D,
+// N_D= 4.82*10^21 * T^(3/2) /m^3
+T= (N_D/( 4.82*10^21 ))^(2/3);// in K
+disp(T,"Temperature in K is : ")