summaryrefslogtreecommitdiff
path: root/2087/CH3
diff options
context:
space:
mode:
Diffstat (limited to '2087/CH3')
-rwxr-xr-x2087/CH3/EX3.1/example3_1.sce17
-rwxr-xr-x2087/CH3/EX3.10/example3_10.sce12
-rwxr-xr-x2087/CH3/EX3.11/example3_11.sce23
-rwxr-xr-x2087/CH3/EX3.12/example3_12.sce25
-rwxr-xr-x2087/CH3/EX3.13/example3_13.sce26
-rwxr-xr-x2087/CH3/EX3.14/example3_14.sce30
-rwxr-xr-x2087/CH3/EX3.15/example3_15.sce24
-rwxr-xr-x2087/CH3/EX3.16/example3_16.sce29
-rwxr-xr-x2087/CH3/EX3.17/example3_17.sce54
-rwxr-xr-x2087/CH3/EX3.18/example3_18.sce33
-rwxr-xr-x2087/CH3/EX3.19/example3_19.sce33
-rwxr-xr-x2087/CH3/EX3.2/example3_2.sce23
-rwxr-xr-x2087/CH3/EX3.20/example3_20.sce26
-rwxr-xr-x2087/CH3/EX3.21/example3_21.sce30
-rwxr-xr-x2087/CH3/EX3.22/example3_22.sce20
-rwxr-xr-x2087/CH3/EX3.23/example3_23.sce43
-rwxr-xr-x2087/CH3/EX3.24/example3_24.sce23
-rwxr-xr-x2087/CH3/EX3.25/example3_25.sce24
-rwxr-xr-x2087/CH3/EX3.26/example3_26.sce18
-rwxr-xr-x2087/CH3/EX3.27/example3_27.sce20
-rwxr-xr-x2087/CH3/EX3.28/example3_28.sce28
-rwxr-xr-x2087/CH3/EX3.3/example3_3.sce15
-rwxr-xr-x2087/CH3/EX3.4/example3_4.sce16
-rwxr-xr-x2087/CH3/EX3.5/example3_5.sce20
-rwxr-xr-x2087/CH3/EX3.6/example3_6.sce24
-rwxr-xr-x2087/CH3/EX3.7/example3_7.sce19
-rwxr-xr-x2087/CH3/EX3.8/example3_8.sce25
-rwxr-xr-x2087/CH3/EX3.9/example3_9.sce12
28 files changed, 692 insertions, 0 deletions
diff --git a/2087/CH3/EX3.1/example3_1.sce b/2087/CH3/EX3.1/example3_1.sce
new file mode 100755
index 000000000..089deab18
--- /dev/null
+++ b/2087/CH3/EX3.1/example3_1.sce
@@ -0,0 +1,17 @@
+
+
+//example 3.1
+//classify the irrigation water
+clc;
+//Given
+Na=24; //concentration of sodium ion
+Ca=3.6; //concentration of calcium ion
+Mg=2; //concentration of magnesium ion
+EC=180; //electrical conductivity
+SAR=Na/(((Ca+Mg)/2)^(0.5)); //Sodium absorption ratio
+SAR=round(SAR*100)/100;
+mprintf("SAR=%f.",SAR);
+mprintf("\nWater falls under S2 class."); //from table 3.2
+mprintf("\nFor EC=180,");
+mprintf("\nwater falls under C1 class."); //from table 3.1
+mprintf("\nWater is medium sodium and low saline water.");
diff --git a/2087/CH3/EX3.10/example3_10.sce b/2087/CH3/EX3.10/example3_10.sce
new file mode 100755
index 000000000..07fb25de8
--- /dev/null
+++ b/2087/CH3/EX3.10/example3_10.sce
@@ -0,0 +1,12 @@
+
+
+//example 3.10
+//calculate Duty of water
+clc;
+//Given
+B=120; //Base period
+delta=92; //total depth requirement of crop
+
+D=8.64*B*100/delta;
+D=round(D);
+mprintf("Duty of water=%f hectares/cumec.",D);
diff --git a/2087/CH3/EX3.11/example3_11.sce b/2087/CH3/EX3.11/example3_11.sce
new file mode 100755
index 000000000..a7e191825
--- /dev/null
+++ b/2087/CH3/EX3.11/example3_11.sce
@@ -0,0 +1,23 @@
+
+
+//example 3.11
+//calculate Dischage required at head of canal
+clc;
+//Given
+Cr=2; //crop ratio
+A=80000; //Area of field
+CI=85; //percent field culturable irrigable
+IK=30; //irrigation intensity during kharif season
+IR=60; //irrigation intensity for rabi season
+DuK=800; //Duty of water for kharif season
+DuR=1700; //Duty of water for rabi season
+
+CIA=A*CI/100; //Culturable irrigable area
+AK=CIA*IK/100; //Area under kharif season
+AR=CIA*IR/100; //Area under rabi season
+DK=AK/DuK;
+DR=AR/DuR;
+mprintf("Dischage required at head of canal during Kharif season=%f cumecs.",DK);
+mprintf("\nDischage required at head of canal during Rabi season=%f cumecs.",DR);
+mprintf("\nWater requirement during kharif is greater than during rabi season");
+mprintf("\nHence,canal should be designed to carry discharge of %f cumecs.",DK);
diff --git a/2087/CH3/EX3.12/example3_12.sce b/2087/CH3/EX3.12/example3_12.sce
new file mode 100755
index 000000000..3ff7fef4b
--- /dev/null
+++ b/2087/CH3/EX3.12/example3_12.sce
@@ -0,0 +1,25 @@
+
+
+//example 3.12
+//calculate Dischage required at head of canal
+clc;
+//Given
+CA=2600; //culturable area
+IS=20; //irrigation intensity for sugarcane
+IR=40; //irrigation intensity for rice
+DuS=750; //Duty of water for sugarcane
+DuR=1800; //Duty of water for rice
+PK=1.2; //Peak demand
+
+AS=CA*IS/100; //Area under sugarcane
+AR=CA*IR/100; //Area under rice
+DS=AS/DuS;
+DR=AR/DuR;
+DT=DS+DR;
+DD=PK*DT-0.005333+0.01;
+DR=round(DR*1000)/1000;
+DT=round(DT*1000)/1000;
+mprintf("Water required for Rice=%f cumecs.",DR);
+mprintf("\n Sugarcane is a perennial crop.");
+mprintf("\nHence,Water required for Sugarcane=%f cumecs.",DT);
+mprintf("\nDesign dischage to meet the peak demand=%f cumecs.",DD);
diff --git a/2087/CH3/EX3.13/example3_13.sce b/2087/CH3/EX3.13/example3_13.sce
new file mode 100755
index 000000000..f9c8992c4
--- /dev/null
+++ b/2087/CH3/EX3.13/example3_13.sce
@@ -0,0 +1,26 @@
+
+
+//example 3.13
+//compare the efficiency
+clc;funcprot(0);
+//given
+ql=20; //discharge in left branch
+Al=20000; //culturable area in left branch
+Bl=120; //Base period in left branch
+Il=0.8; //intensity of rabi in left branch
+qr=8; //discharge in rigth branch
+Ar=12000; //culturable area in rigth branch
+Br=120; //Base period in rigth branch
+Ir=0.5; //intensity of rabi in rigth branch
+
+//for left canal
+ARl=Al*Il;
+Dl=ARl/ql;
+mprintf("Duty for left canal is=%i hectares/cumecs.",Dl);
+
+//for rigth canal
+ARr=Ar*Ir;
+Dr=ARr/qr;
+mprintf("\nDuty for left canal is=%i hectares/cumecs.",Dr);
+mprintf("\nSince,left canal has higher duty,it is more efficient");
+
diff --git a/2087/CH3/EX3.14/example3_14.sce b/2087/CH3/EX3.14/example3_14.sce
new file mode 100755
index 000000000..7553a6f4a
--- /dev/null
+++ b/2087/CH3/EX3.14/example3_14.sce
@@ -0,0 +1,30 @@
+
+
+//example 3.14
+//calculate Discharge for water course
+clc;
+//Given
+CA=1200; //culturable area
+IA=0.4; //intensity of irrigation of crop A
+IB=0.35; //intensity of irrigation of crop B
+bA=20; //kor period of crop A
+bB=15; //kor period of crop B
+deltaA=0.1; //kor depth of crop A
+deltaB=0.16; //kor depth of crop B
+
+//crop A
+A=CA*IA;
+Du=8.64*bA/deltaA;
+qA=A/Du;
+qA=round(qA*1000)/1000;
+mprintf("Discharge required for crop A=%f cumec.",qA);
+
+//crop B
+A=CA*IB;
+Du=8.64*bB/deltaB;
+qB=A/Du;
+qB=round(qB*1000)/1000;
+mprintf("\nDischarge required for crop B=%f cumec.",qB);
+D=qA+qB;
+D=round(D*10)/10;
+mprintf("\nDesign discharge of water course=%f cumec.",D);
diff --git a/2087/CH3/EX3.15/example3_15.sce b/2087/CH3/EX3.15/example3_15.sce
new file mode 100755
index 000000000..15d32727e
--- /dev/null
+++ b/2087/CH3/EX3.15/example3_15.sce
@@ -0,0 +1,24 @@
+
+
+//example 3.15
+//calculate
+//duty of irrigation water
+//discharge required
+clc;
+//Given
+B=12; //transplantaion period
+D=0.5; //total depth of water required by the crop
+R=0.1; //rain falling on field
+L=0.2; //loss of water
+A=600; //irrigated area
+I=0.6; //intensity of irrigation
+delta=D-R;
+Dui=8.64*B/delta;
+//since water loss is 20 percent
+Du=(1-L)*Dui;
+mprintf("Duty of water required=%f hectares/cumec.",Du);
+
+TA=I*A;
+q=TA/Du;
+q=round(q*100)/100;
+mprintf("\nDischarge at head of water course=%f cumecs.",q);
diff --git a/2087/CH3/EX3.16/example3_16.sce b/2087/CH3/EX3.16/example3_16.sce
new file mode 100755
index 000000000..b94bd406d
--- /dev/null
+++ b/2087/CH3/EX3.16/example3_16.sce
@@ -0,0 +1,29 @@
+
+
+//example 3.16
+//calculate
+//discharge required at the head
+//design discharge
+clc;
+//Given
+CF=0.8; //Capacity factory
+Tf=13/20; //time factor
+A=[850 120 600 500 360]; //given values of area
+B=[320 90 120 120 120]; //given values of Base period
+D=[580 580 1600 2000 600]; //given values of duty at head canal
+
+DS=A(1)/D(1); //discharge for sugarcane
+DOS=A(2)/D(2); //discharge for overlap sugarcane
+DW=A(3)/D(3); //discharge for wheat
+DB=A(4)/D(4); //discharge for bajri
+DV=A(5)/D(5); //discharge for vegetables
+DR=DS+DW;
+DM=DS+DB;
+DH=DS+DOS+DV;
+mprintf("Maximum demand is in hot weather");
+q=DH/Tf;
+D=q/CF;
+q=round(1000*q)/1000;
+D=round(100*D)/100;
+mprintf("\nFull supply discharge at head=%f cumecs",q);
+mprintf("\nDesign discharge=%f cumecs.",D);
diff --git a/2087/CH3/EX3.17/example3_17.sce b/2087/CH3/EX3.17/example3_17.sce
new file mode 100755
index 000000000..b8f4e6421
--- /dev/null
+++ b/2087/CH3/EX3.17/example3_17.sce
@@ -0,0 +1,54 @@
+
+
+//example 3.17
+//calculate resvior capacity
+clc;
+//Given
+CL=0.2; //Canal loss
+RL=0.12; //Reservior loss
+A=[4800 5600 2400 3200 1400]; //given values of area under crop
+D=[1800 800 1400 900 700]; //given values of duty at field
+B=[120 360 200 120 120]; //given values of base period
+
+//(a) Wheat
+d=A(1)/D(1);
+V1=d*B(1);
+//(b) Sugarcane
+d=A(2)/D(2);
+V2=d*B(2);
+//(c) Cotton
+d=A(3)/D(3);
+V3=round(d*B(3));
+//(d) Rice
+d=A(4)/D(4);
+V4=round(d*B(4));
+//(e) vegetables
+d=A(5)/D(5);
+V5=d*B(5);
+
+Vd=(V1+V2+V3+V4+V5)*8.64;
+SC=Vd/((1-CL)*(1-RL));
+mprintf("Reservior capacity=%f hectare-metres.",SC);
+
+//Alternative method
+
+for i=1:5
+ delta(i)=8.64*B(i)/D(i);
+end
+
+for j=1:5
+ V(j)=A(j)*delta(j);
+end
+s=0;
+for k=1:5
+ s=s+V(k);
+end
+SC=s/((1-CL)*(1-RL));
+SC=round(SC);
+mprintf("\n By Alternative method.\nStorage capacity=%f hectare-metres.",SC);
+
+
+
+
+
+
diff --git a/2087/CH3/EX3.18/example3_18.sce b/2087/CH3/EX3.18/example3_18.sce
new file mode 100755
index 000000000..00ac20ad6
--- /dev/null
+++ b/2087/CH3/EX3.18/example3_18.sce
@@ -0,0 +1,33 @@
+
+
+//example 3.18
+//Calculate
+//consumptive use
+//consumptive irrigatin requirement
+//field irrigatio reqiurement
+clc;
+//Given
+eita=0.7; //water application efficiency
+k=0.75; //crop factor
+T=[19 16 12.5 13]; //given values of temperature
+p=[7.19 7.15 7.30 7.03]; //daytime hours of the year
+RD=1.2; //rainfall in december
+RJ=0.8; //rainfall in january
+for i=1:4
+ f(i)=p(i)*(1.8*T(i)+32)/40;
+end
+s=0;
+for i=1:4
+ s=s+f(i);
+end
+C=k*s;
+R=RD+RJ;
+CIR=C-R;
+FIR=CIR/eita;
+C=round(10*C)/10;
+CIR=round(CIR*10)/10;
+FIR=round(FIR*10)/10;
+mprintf("Consumptive use=%f cm.",C);
+mprintf("\nconsumptive irrigatin requirement=%f cm.",CIR);
+mprintf("\nfield irrigatio reqiurement=%f cm.",FIR);
+
diff --git a/2087/CH3/EX3.19/example3_19.sce b/2087/CH3/EX3.19/example3_19.sce
new file mode 100755
index 000000000..253fcf2d9
--- /dev/null
+++ b/2087/CH3/EX3.19/example3_19.sce
@@ -0,0 +1,33 @@
+
+
+//example 3.19
+//calculate
+//consumptive use of rice using penman's formula in january
+clc;
+//Given
+L=20; //latitude of place(degree North)
+T=15; //mean monthly temperature(degree celcius)
+RH=0.5; //relative humidity
+E=250; //elevation of area
+V=25; //wind velocity at 2 m heigth
+//from table 3.10
+VP=12.79; //saturation vapour pressure
+s=0.8; //slope of curve between vapur pressure and temperature
+//from table 3.11
+R=10.8;
+//from table 3.12
+N=11.1;
+//from table 3.9
+n=7.74;
+p=n/N;
+e=VP*RH;
+Ea=0.002187*(160+V)*(VP-e);
+r=0.2;
+alpha=0.49;
+sigma=2.01D-9;
+Ta=293;
+H=R*(1-r)*(0.29*cos(%pi/9)+0.55*p)-sigma*Ta^4*(0.56-0.092*e^0.5)*(0.10+0.9*p);
+Et=(s*H+alpha*Ea)*31/(s+alpha);
+Et=round(Et*10)/10;
+mprintf("consumptive use of rice in january=%f mm of water.",Et);
+
diff --git a/2087/CH3/EX3.2/example3_2.sce b/2087/CH3/EX3.2/example3_2.sce
new file mode 100755
index 000000000..19c2f1716
--- /dev/null
+++ b/2087/CH3/EX3.2/example3_2.sce
@@ -0,0 +1,23 @@
+
+
+//example 3.2
+//calculate
+//Depth of moisture in root zone at field capacity
+//Depth of moisture in root zone at permanent wilting point
+//Depth of moisture available in root zone
+clc;
+//Given
+gammad=15; //dry weigth of soil
+gammaw=9.81; //unit weigth of water
+Fc=0.3; //field capacity
+pwp=0.08; //permanent wilting point
+d=0.8; //root zone depth
+d1=gammad*Fc*1000/gammaw;
+d2=gammad*pwp*1000/gammaw;
+d3=gammad*d*(Fc-pwp)*1000/gammaw;
+d1=round(d1);
+d2=round(d2);
+d3=round(d3);
+mprintf("Depth of moisture in root zone at field capacity=%f mm/m.",d1);
+mprintf("\nDepth of moisture in root zone at permanent wilting point=%f mm/m.",d2);
+mprintf("\nDepth of moisture available in root zone=%f mm/m.",d3);
diff --git a/2087/CH3/EX3.20/example3_20.sce b/2087/CH3/EX3.20/example3_20.sce
new file mode 100755
index 000000000..387587fc1
--- /dev/null
+++ b/2087/CH3/EX3.20/example3_20.sce
@@ -0,0 +1,26 @@
+
+
+//example 3.20
+//calculate
+//maximum storage capacity;depth of irrigation water
+//field irrigation requirement;water required at canal outlet
+clc;
+//Given
+Fc=0.27; //Field capacity
+pwp=0.13; //permanent wilting point
+d=80; //depth of soil(cm)
+gammad=1.5; //dry unit weigth of soil(g/cc)
+gammaw=1; //unit weigth of water(g/cc)
+M=0.18; //avearge soil moisture
+eita=0.8; //field efficiency
+FC=0.15; //field channel
+SC=gammad*d*(Fc-pwp)/gammaw;
+D=gammad*d*(Fc-M)/gammaw;
+FIR=D/eita;
+W=FIR/(1-FC);
+W=round(W*10)/10;
+mprintf("maximum storage capacity=%f cm",SC);
+mprintf("\ndepth of irrigation water=%f cm",D);
+mprintf("\nfield irrigation requirement=%f cm",FIR);
+mprintf("\nwater required at canal outlet=%f cm",W);
+
diff --git a/2087/CH3/EX3.21/example3_21.sce b/2087/CH3/EX3.21/example3_21.sce
new file mode 100755
index 000000000..55c126a66
--- /dev/null
+++ b/2087/CH3/EX3.21/example3_21.sce
@@ -0,0 +1,30 @@
+
+
+//example 3.21
+//calculate reservior capacity
+clc;
+//given
+W=0.4; //amount of water available from precipitation
+Cl=0.15; //Channel loss
+RL=0.1; //reservior loss
+B=[120 320 120 200 100]; //Base period
+D=[1800 800 900 1400 1200];//Duty at field
+A=[500 600 300 1200 500]; //Area under crop
+
+for i=1:5
+ delta(i)=8.64*B(i)/D(i);
+end
+
+for i=1:5
+ V(i)=delta(i)*A(i);
+
+end
+s=0;
+for i=1:5
+ s=s+V(i);
+end
+C=s*(1-W)/((1-Cl)*(1-RL));
+
+mprintf("Reservior capacity=%i ha-m.",C);
+
+
diff --git a/2087/CH3/EX3.22/example3_22.sce b/2087/CH3/EX3.22/example3_22.sce
new file mode 100755
index 000000000..95d822009
--- /dev/null
+++ b/2087/CH3/EX3.22/example3_22.sce
@@ -0,0 +1,20 @@
+
+
+//example 3.22
+//calculate
+//discharge required at head of distributory
+clc;
+//given
+GCA=10000; //gross commanded area
+CCA=0.75*GCA; //Culturable commanded area
+IR=0.6; //intensity of irrigation during rabi season
+IK=0.3; //intensity of irrigation during kharif season
+DuR=2500; //duty during rabi season
+DuK=1000; //duty during kharif season
+AR=IR*CCA; //area under irrigation in rabi season
+AK=IK*CCA; //area under irrigation in kharif season
+DR=AR/DuR;
+DK=AK/DuK;
+mprintf("discharge required at head of distributory=%f cumecs.",DK);
+
+
diff --git a/2087/CH3/EX3.23/example3_23.sce b/2087/CH3/EX3.23/example3_23.sce
new file mode 100755
index 000000000..f9eeab46e
--- /dev/null
+++ b/2087/CH3/EX3.23/example3_23.sce
@@ -0,0 +1,43 @@
+
+
+//example 3.23
+//calculate irrigation schedule
+clc;
+//given
+Fc=0.18; //field capacity
+wc=0.07; //wilting cofficient
+Sg=1.35; //bulk density of soil
+d=1.2; //root zone depth
+m=Fc-wc;
+mo=wc+m/3;
+dw=100*Sg*d*(Fc-mo);
+mprintf("Depth of water required=%f cm",dw);
+ev1=1.1; //average evapotranspiration rates in 1 NOV-30 NOV
+ev2=1.7; //average evapotranspiration rates in 1 DEC-31 DEC
+ev3=2.4; //average evapotranspiration rates in 1 JAN-31 JAN
+ev4=1.5; //average evapotranspiration rates in 1 FEB-28 FEB
+ev5=3.5; //average evapotranspiration rates in 1 MAR-25 MAR
+//irrigation requirement from 1 NOV to 3 JAn
+dev=(ev1*30+ev2*31+ev3*3)/10;
+mprintf("\n\nWater consumed by evapotranspiration=%f cm.",dev);
+mprintf("\nNo water is required during 1 NOV-3 JAN");
+
+//irrigation requirement after 3rd JAN
+ws=(ev3-1.5)*16/10; //water consumed from soil from 4 JAN-19 JAN
+ts=ws+dev; //water withdrawn from soil from 1 NOV-19 JAN
+s=(dw-ts)*10;
+day=s/ev3;
+depth=ts+(4*ev3)/10+(2*ev3)/10;
+mprintf("\n\ndepth of water required in first irrigation=%f cm.",depth);
+///irrigation requirement from 26 JAn to 25 MAR
+w1=ev3*6;
+w2=ev4*28;
+w3=ev5*25;
+W=w1+w2+w3;
+x=(dw*10-(14.4+42))/ev5;
+mprintf("\n\nHence second irrigation is required after %f days i.e on 18th March.",x);
+depth1=(W-(dw*10))/10;
+mprintf("\nrequired water depth=%f cm",depth1);
+mprintf("\n\nFirst Watering on 29 JAn and 30 JAN=%f cm.\nSecond watering required on 18th March=%f cm.",depth,depth1);
+
+
diff --git a/2087/CH3/EX3.24/example3_24.sce b/2087/CH3/EX3.24/example3_24.sce
new file mode 100755
index 000000000..3fe61892d
--- /dev/null
+++ b/2087/CH3/EX3.24/example3_24.sce
@@ -0,0 +1,23 @@
+
+
+//example 3.24
+//calculate daily consumptive
+//discharge in canal
+clc;
+//given
+Fc=0.26; //Field capacity of soil
+A=3000; //Area of field
+OM=0.12; //optimum moisture
+pwp=0.1; //permanent wilting point
+d=80; //depth of root zone
+RD=1.4; //relative density of soil
+f=10; //frequency of irrigation
+eita=0.23; //overall efficiency
+D=RD*d*(Fc-OM);
+U=D*10/f;
+Wr=A*D*100;
+q=Wr/(f*24*3600);
+q=round(q*100)/100;
+mprintf("daily consumptive=%f mm.",U);
+mprintf("\ndischarge in canal=%f q cumecs.",q);
+
diff --git a/2087/CH3/EX3.25/example3_25.sce b/2087/CH3/EX3.25/example3_25.sce
new file mode 100755
index 000000000..0448d6ed0
--- /dev/null
+++ b/2087/CH3/EX3.25/example3_25.sce
@@ -0,0 +1,24 @@
+
+
+//example 3.25
+//calculate total water to be delivered
+clc;
+//given
+C1=0.2; //consumptive requirement of crop for 1 to 15 days
+C2=0.3; //consumptive requirement of crop for 16 to 40 days
+C3=0.5; //consumptive requirement of crop for 41 to 50 days
+C4=0.1; //consumptive requirement of crop for 51 to 55 days
+A=50; //area of land
+wr=5; //presowing water requirement
+R=3.5; //rainfall during 36th and 45th day
+w1=15*C1*100;
+w2=25*C2*100;
+w3=10*C3*100;
+w4=5*C4*100;
+w5=5*100;
+W=w1+w2+w3+w4+w5;
+ER=3.5*100;
+q=(W-ER)*A;
+mprintf("total water to be delivered=%i cubic metre.",q);
+
+
diff --git a/2087/CH3/EX3.26/example3_26.sce b/2087/CH3/EX3.26/example3_26.sce
new file mode 100755
index 000000000..a5b0b4e1a
--- /dev/null
+++ b/2087/CH3/EX3.26/example3_26.sce
@@ -0,0 +1,18 @@
+
+
+//example 3.26
+//calculate watering interval
+clc;
+//given
+Fc=0.3; //field capacity
+pwp=0.11; //permanent wilting percent
+gammad=1300; //density of soil
+gammaw=1000; //density of water
+d=700; //root zone depth
+CW=12; //daily consumptive use of water
+WHC=Fc-pwp;
+mo=Fc-(0.75*WHC);
+D=gammad*d*(Fc-mo)/gammaw;
+I=D/CW;
+mprintf(" watering interval=%i days",I);
+
diff --git a/2087/CH3/EX3.27/example3_27.sce b/2087/CH3/EX3.27/example3_27.sce
new file mode 100755
index 000000000..657503eac
--- /dev/null
+++ b/2087/CH3/EX3.27/example3_27.sce
@@ -0,0 +1,20 @@
+
+
+//example 3.27
+//calculate Duty of water
+//discharge required in water course
+clc;
+//given
+A=1000; //total area
+AI=0.7*A; //area under irrigation
+B=15; //Base period
+d=500; //depth of water required during transplantation
+R=120; //useful rain falling
+Wl=0.2; //water loss
+delta=d-R;
+Du=8.64*B*1000/delta;
+DuH=Du*(1-Wl);
+q=AI/DuH;
+q=round(q*100)/100;
+mprintf("Duty of water=%i hec/cumec.",Du);
+mprintf("\ndischarge required in water course=%f cumecs.",q);
diff --git a/2087/CH3/EX3.28/example3_28.sce b/2087/CH3/EX3.28/example3_28.sce
new file mode 100755
index 000000000..3cbd0ff23
--- /dev/null
+++ b/2087/CH3/EX3.28/example3_28.sce
@@ -0,0 +1,28 @@
+
+
+//example 3.28
+//calculate reservior capacity
+clc;
+//given
+Ar=4000; //culturable commanded area
+CL=0.25; //canal loss
+RL=0.15; //reservior loss
+B=[120 360 180 120 120]; //base period
+D=[1800 1700 1400 800 700];//duty of water
+I=[20 20 10 15 15]; //intensity of irrigation
+for i=1:5
+ A(i)=Ar*I(i)/10; //area under crop
+end
+for i=1:5
+ Q(i)=A(i)/D(i); //discharge required
+end
+for i=1:5
+ V(i)=8.64D4*Q(i)*B(i); //quantity of water
+end
+s=0;
+for i=1:5
+ s=s+V(i);
+end
+SC=round(s/((1-CL)*(1-RL)*1000000));
+mprintf("Storage capacity=%iD+06 cubic metre.",SC);
+
diff --git a/2087/CH3/EX3.3/example3_3.sce b/2087/CH3/EX3.3/example3_3.sce
new file mode 100755
index 000000000..e382c144c
--- /dev/null
+++ b/2087/CH3/EX3.3/example3_3.sce
@@ -0,0 +1,15 @@
+
+
+//example 3.3
+//calculate
+//depth upto which soil profile is wetted
+clc;
+//Given
+gammad=15.3; //dry weigth of soil
+gammaw=9.81; //unit weigth of water
+Fc=0.15; //field capacity
+Mc=0.08; //moisture content before irrigation
+D=60; //Depth of water applied
+d=(gammaw*D)/(gammad*(Fc-Mc));
+d=round(d);
+mprintf("Depth upto which soil profile is wetted=%f mm.",d);
diff --git a/2087/CH3/EX3.4/example3_4.sce b/2087/CH3/EX3.4/example3_4.sce
new file mode 100755
index 000000000..84e6e1341
--- /dev/null
+++ b/2087/CH3/EX3.4/example3_4.sce
@@ -0,0 +1,16 @@
+
+
+//example 3.4
+//calculate
+//Depth of water required to irrigate the soil
+clc;
+//Given
+Sg=1.6; //Apparent specific gravity
+Fc=0.2; //Field capacity
+M1=150; //mass of sample soil
+M2=136; //mass of sample after drying
+d=0.9; //depth of soil to be irrigated
+Mc=(M1-M2)/M2;
+D=Sg*d*1000*(Fc-Mc);
+D=round(D);
+mprintf("Depth of water required to irrigate the soil=%f mm.",D);
diff --git a/2087/CH3/EX3.5/example3_5.sce b/2087/CH3/EX3.5/example3_5.sce
new file mode 100755
index 000000000..e94453b43
--- /dev/null
+++ b/2087/CH3/EX3.5/example3_5.sce
@@ -0,0 +1,20 @@
+
+
+//example 3.5
+//calculate Field Capacity
+clc;
+//Given
+d=2; //root zone depth
+Wc=0.05; //existing water content
+gammad=15; //dry density of soil
+gammaw=9.81; //unit weigth of water
+Vw=500 //water applied to the soil
+Wl=0.1; //water loss
+A=1000; //area of plot
+Vu=Vw*0.9; //volume of water used in soil
+Wu=Vu*gammaw; //weigth of water used in soil
+Ws=A*d*gammad; //total dry weigth of soil
+Wa=Wu*100/Ws; //percent water added
+Fc=Wc*100+Wa;
+Fc=round(Fc*100)/100;
+mprintf("The Field Capacity of soil is=%f percent.",Fc);
diff --git a/2087/CH3/EX3.6/example3_6.sce b/2087/CH3/EX3.6/example3_6.sce
new file mode 100755
index 000000000..ca20deccb
--- /dev/null
+++ b/2087/CH3/EX3.6/example3_6.sce
@@ -0,0 +1,24 @@
+
+
+//example 3.6
+//calculate
+//storage capcity of soil
+//Water depth required to be applied
+clc;
+//Given
+Fc=0.22; //Field Capacity
+wc=0.1; //wilting coefficient
+gammad=15; //dry unit weigth of soil
+gammaw=9.81; //unit wiegth of water
+d=0.7; //root zone depth
+w=0.14; //falled moisture content
+E=0.75; //water application efficiency
+SC=gammad*d*(Fc-wc)*100/gammaw;
+D=gammad*d*(Fc-w)*1000/gammaw;
+FIR=D/E; //Field irrigation requirement
+SC=round(SC*10)/10;
+D=round(D);
+FIR=round(FIR)+1;
+mprintf("Maximum storage capacity of soil=%f cm.",SC);
+mprintf("\nWater depth required to be applied=%f mm",D);
+mprintf("\nField Irrigation Requirement=%f mm",FIR);
diff --git a/2087/CH3/EX3.7/example3_7.sce b/2087/CH3/EX3.7/example3_7.sce
new file mode 100755
index 000000000..c83d1aedb
--- /dev/null
+++ b/2087/CH3/EX3.7/example3_7.sce
@@ -0,0 +1,19 @@
+
+
+//example 3.7
+//calculate watering frequency
+clc;
+//Given
+Fc=0.27; //Field capacity
+pwp=0.14; //permanent wilting point
+gammad=15; //dry density of soil
+gammaw=9.81; //unit weigth of water
+d=0.75; //effective depth of root zone
+Du=11; //daily consumptive use of water
+Am=Fc-pwp; //Available moisture
+//let readily available moisture be 80 percent of available moisture
+RAm=0.8*Am;
+Mo=Fc-RAm;
+D=gammad*d*(Fc-Mo)*100/gammaw;
+WF=D*10/Du;
+mprintf("Watering Frequency=%i days.",WF);
diff --git a/2087/CH3/EX3.8/example3_8.sce b/2087/CH3/EX3.8/example3_8.sce
new file mode 100755
index 000000000..a912a400d
--- /dev/null
+++ b/2087/CH3/EX3.8/example3_8.sce
@@ -0,0 +1,25 @@
+
+
+//example 3.8
+//calculate
+//net depth of irrigation water reqiured
+//time required to irrigate field
+clc;
+//given
+Fc=0.22; //Field capacity
+Sg=1.56; //Apparent specific gravity
+d=0.6; //root zone depth
+//irrigation is started when 70 percent of moisture is used
+l=250; //length of field
+b=40; //width of field
+q=20; //Discharge
+
+
+m=(1-0.7)*Fc;
+D=Sg*d*(Fc-m)*1000;
+A=l*b;
+t=A*D/(q*3600);
+D=round(D);
+t=round(t);
+mprintf("Net depth of irrigation water required=%f mm.",D);
+mprintf("\nTime required to irrigate field=%f hours.",t);
diff --git a/2087/CH3/EX3.9/example3_9.sce b/2087/CH3/EX3.9/example3_9.sce
new file mode 100755
index 000000000..2ce92e026
--- /dev/null
+++ b/2087/CH3/EX3.9/example3_9.sce
@@ -0,0 +1,12 @@
+
+
+//example 3.9
+//calculate delta for crop
+clc;
+//Given
+B=110; //Base period
+D=1400; //Duty of water
+
+delta=8.64*B*100/D;
+delta=round(delta);
+mprintf("Delta for crop is=%f cm.",delta);