diff options
Diffstat (limited to '2087/CH10/EX10.4')
-rwxr-xr-x | 2087/CH10/EX10.4/example10_4.sce | 98 |
1 files changed, 98 insertions, 0 deletions
diff --git a/2087/CH10/EX10.4/example10_4.sce b/2087/CH10/EX10.4/example10_4.sce new file mode 100755 index 000000000..f802781fb --- /dev/null +++ b/2087/CH10/EX10.4/example10_4.sce @@ -0,0 +1,98 @@ +
+
+//example 10.4
+//check section for:
+//Stability of d/s slope against steady seepage
+//Sloughing of u/s slope against sudden drawdown
+//Stability of the foundation against shear
+//Seepage through body of dam
+clc;funcprot(0);
+//given
+//Dimensions
+H=20; //Heigth of dam
+Bt=6; //top width of dam
+s1=4; //u/s slope
+s2=3; //d/s slope
+fb=2; //free board
+//Properties of materials of dam
+gamma_d=17.27; //dry density
+wc=0.15; //optimum water content
+gamma_s=21.19; //saturated density
+gamma_w=9.81; //unit weigth of water
+wavg=19.62; //average unit weigth under seepage
+theta=26; //average angle of internal friction(degree)
+co=19.13; //average cohesion
+K=5D-4; //coefficient of permeability
+//properties of foundation materials
+gamma_f=17.27; //average unit weigth
+cof=47.87; //average cohesion
+fi=8; //average angle internal friction
+t=6; //thickness of clay
+FOSp=1.5; //permissible factor of safety of slope
+PS=8D-6; //permissible seepage
+
+
+//(a) Stability of d/s slope against steady seepage
+An=302.4; //area of N diagram
+At=91.2; //area of T diagram
+Au=98.4; //area of U diagram
+Le=60; //length of arc
+SumN=An*gamma_s;
+SumT=At*gamma_s;
+SumU=Au*gamma_w;
+F=((Le*co)+(SumN-SumU)*tand(theta))/SumT;
+F=round(F*100)/100;
+mprintf("Part(a):")
+mprintf("\nFactor of safety for slope=%f.",F);
+mprintf("\nSafe");
+
+//(b) Sloughing of u/s slope against sudden drawdown
+h1=15;
+b=80;
+P=gamma_s*H^2*tand(45-(theta/2))^2/2+gamma_w*h1^2/2;
+sav=P/b;
+smax=2*sav;
+Ne=(gamma_s-gamma_w)*b*H/2;
+R=Ne*tand(theta)+co*b;
+fs=R/P;
+fs=round(fs*100)/100;
+mprintf("\n\nPart(b):")
+mprintf("\nFactor of safety w.r.t average shear=%f.",fs);
+mprintf("\nSafe");
+sr=0.6*H*(gamma_s-gamma_w)*tand(theta)+co;
+FS=sr/smax;
+FS=round(FS*100)/100;
+mprintf("\n\nFactor of safety w.r.t maximum shear=%f.",FS);
+mprintf("\nSafe");
+
+//(c) Stability of the foundation against shear
+h1=26;
+h2=6;
+gamma_m=(wavg*(h1-h2)+gamma_f*h2)/h1;
+l=(gamma_m*h1*tand(fi)+cof)/(gamma_m*h1);
+fi1=atand(l);
+P=(h1^2-h2^2)/2*gamma_m*tand(45-(fi1/2))^2;
+sav=P/b;
+smax=2*sav;
+s1=cof+gamma_f*h2*tand(fi);
+s2=cof+gamma_m*h1*tand(fi);
+as=(s1+s2)/2;
+fs=as/sav;
+fs=round(fs*100)/100;
+mprintf("\n\nPart(c):")
+mprintf("\nFactor of safety w.r.t overall shear=%f.",fs);
+mprintf("\nSafe");
+
+gamma_av=(wavg*0.6*H+gamma_f*h2)/((0.6*H)+h2);
+s=cof+gamma_av*0.6*H*tand(fi);
+fs=s/smax;
+fs=round(fs*100)/100;
+mprintf("\n\nFactor of safety w.r.t overall shear=%f.",fs);
+mprintf("\nUnsafe");
+
+//(d) Seepage through body of dam
+s=2; //measured
+q=K*s*100000/100;
+mprintf("\n\nPart(d):")
+mprintf("\n Seepage through body of dam=%fD-5 cumecs/m length of dam",q);
+
|