diff options
Diffstat (limited to '2084/CH11')
-rwxr-xr-x | 2084/CH11/EX11.1/11_1.sce | 19 | ||||
-rwxr-xr-x | 2084/CH11/EX11.10/11_10.sce | 15 | ||||
-rwxr-xr-x | 2084/CH11/EX11.10w/11_10w.sce | 20 | ||||
-rwxr-xr-x | 2084/CH11/EX11.11w/11_11w.sce | 21 | ||||
-rwxr-xr-x | 2084/CH11/EX11.12w/11_12w.sce | 19 | ||||
-rwxr-xr-x | 2084/CH11/EX11.13w/11_13w.sce | 22 | ||||
-rwxr-xr-x | 2084/CH11/EX11.2/11_2.sce | 16 | ||||
-rwxr-xr-x | 2084/CH11/EX11.2w/11_2w.sce | 20 | ||||
-rwxr-xr-x | 2084/CH11/EX11.4/11_4.sce | 14 | ||||
-rwxr-xr-x | 2084/CH11/EX11.4w/11_4w.sce | 20 | ||||
-rwxr-xr-x | 2084/CH11/EX11.5w/11_5w.sce | 31 | ||||
-rwxr-xr-x | 2084/CH11/EX11.7/11_7.sce | 15 | ||||
-rwxr-xr-x | 2084/CH11/EX11.8/11_8.sce | 18 | ||||
-rwxr-xr-x | 2084/CH11/EX11.9/11_9.sce | 19 | ||||
-rwxr-xr-x | 2084/CH11/EX11.9w/11_9w.sce | 17 |
15 files changed, 286 insertions, 0 deletions
diff --git a/2084/CH11/EX11.1/11_1.sce b/2084/CH11/EX11.1/11_1.sce new file mode 100755 index 000000000..c0b565df9 --- /dev/null +++ b/2084/CH11/EX11.1/11_1.sce @@ -0,0 +1,19 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.1
+//calculation of the initial acceleration of the particles
+
+//given data
+m1=1//masss(in kg) of particle1
+m2=2//masss(in kg) of particle2
+r=50*10^-2//separation(in m) between the two particles
+G=6.67*10^-11//universal constant of gravitation(in N-m^2/kg^2)
+
+//calculation
+F=G*m1*m2/(r*r)//force of gravitation
+a1=F/m1//initial acceleration of the particle1
+a2=F/m2//initial acceleration of the particle2
+
+printf('the initial acceleration of the particle1 towards particle2 is %3.1e m/s^2',a1)
+printf('\nthe initial acceleration of the particle2 towards particle1 is %3.1e m/s^2',a2)
diff --git a/2084/CH11/EX11.10/11_10.sce b/2084/CH11/EX11.10/11_10.sce new file mode 100755 index 000000000..ccb4633c1 --- /dev/null +++ b/2084/CH11/EX11.10/11_10.sce @@ -0,0 +1,15 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.10
+//calculation of the escape velocity from the moon
+
+//given data
+M=7.4*10^22//mass(in kg) of the moon
+R=1740*10^3//radius(in m) of the moon
+G=6.67*10^-11//universal constant of gravitation(in N-m^2/kg^2)
+
+//calculation
+v=sqrt(2*G*M/R)//formula of the escape velocity
+
+printf('the escape velocity from the moon is %3.1f km/s',v*10^-3)
diff --git a/2084/CH11/EX11.10w/11_10w.sce b/2084/CH11/EX11.10w/11_10w.sce new file mode 100755 index 000000000..dc5e0a70c --- /dev/null +++ b/2084/CH11/EX11.10w/11_10w.sce @@ -0,0 +1,20 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.10w
+//calculation of the stretch produced in the spring
+
+//given data
+d=1*10^-2//stretch(in m) of the spring
+R=6400*10^3//radius(in m) of the earth
+h=800*10^3//height(in m) above the earth's surface
+
+//calculation
+//The extension in the spring on the surface is
+//1*10^-2 = (G*M*m)/(k*R^2)...........(1)
+//The extension in the spring at height h above the surface
+//x = (G*M*m)/(k*(R+h)^2).............(2)
+//from above equations,we get
+x=d*((R^2)/(R+h)^2)
+
+printf('the stretch produced in the spring is %3.2f cm',x*10^2)
diff --git a/2084/CH11/EX11.11w/11_11w.sce b/2084/CH11/EX11.11w/11_11w.sce new file mode 100755 index 000000000..0a3b52ae8 --- /dev/null +++ b/2084/CH11/EX11.11w/11_11w.sce @@ -0,0 +1,21 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.11w
+//calculation of time period of the pendulum if used at the equator
+
+//given data
+t=2//time period (in s) of the pendulum at North pole
+g=9.8//gravitational acceleration(in m/s^2) of the earth
+G=6.67*10^-11//universal constant of gravitation(in N-m^2/kg^2)
+w=(2*%pi)/(24*60*60)//angular velocity(in rad/s) of the earth
+R=6400*10^3//radius(in m) of the earth
+
+//calculation
+//By equilibrium conditions,we get
+//t = 2*%pi*sqrt(l/g)..............................(1)
+//tdash = 2*%pi*sqrt(l/(g-(w*w*R)).................(2)
+//from equations (1) and (2),we get
+tdash=t*(1+(w*w*R/(2*g)))
+
+printf('the value of time period of the pendulum if used at the equator is %3.4f s',tdash)
diff --git a/2084/CH11/EX11.12w/11_12w.sce b/2084/CH11/EX11.12w/11_12w.sce new file mode 100755 index 000000000..53318807a --- /dev/null +++ b/2084/CH11/EX11.12w/11_12w.sce @@ -0,0 +1,19 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.12w
+//calculation of the speed of projection of the satellite into an orbit
+
+//given data
+r=8000*10^3//radius(in m) of the orbit of the satellite
+R=6400*10^3//radius(in m) of the earth
+g=9.8//gravitational acceleration(in m/s^2) of the earth
+
+//calculation
+//using Newton's second law
+//(G*M*m/(r*r)) = m*v*v/r
+v=sqrt(g*R*R/r)
+t=(2*%pi*r/v)//time period of the satellite
+
+printf('the speed of projection of the satellite into the orbit is %3.2f km/s',v*10^-3)
+printf('\nthe time period of the satellite in the orbit is %d minutes',t*(1/(60)))
diff --git a/2084/CH11/EX11.13w/11_13w.sce b/2084/CH11/EX11.13w/11_13w.sce new file mode 100755 index 000000000..1ede84e27 --- /dev/null +++ b/2084/CH11/EX11.13w/11_13w.sce @@ -0,0 +1,22 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.13w
+//calculation of the speed and the angular speed of the satellite S2 relative to the satellite S1
+
+//given data
+T1=1//period of revolution(in h) of satellite S1
+T2=8//period of revolution(in h) of satellite S2
+R1=10^4//radius(in km) of the orbit of satellite S1
+
+//calculation
+//by Kelpler's third law
+//(R2/R1)^3 = (T2/T1)^2
+R2=R1*(((T2/T1)^2)^(1/3))
+v1=(2*%pi*R1/T1)//speed(in km/h) of satellite S1
+v2=(2*%pi*R2/T2)//speed(in km/h) of satellite S2
+v=abs(v2-v1)//speed of satellite S2 with respect to satellite S1
+w=v/(R2-R1)//angular speed of satellite S2 as observed by an astronaut in satellite S1
+
+printf('the speed of the satellite S2 with respect to the satellite S1 is %3.1e km/h',v)
+printf('\nthe angular speed of the satellite S2 as observed by an astronaut in the satellite S1 is %3.2f rad/h',w)
diff --git a/2084/CH11/EX11.2/11_2.sce b/2084/CH11/EX11.2/11_2.sce new file mode 100755 index 000000000..b0615e43e --- /dev/null +++ b/2084/CH11/EX11.2/11_2.sce @@ -0,0 +1,16 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.2
+//calculation of the work done in bringing three particles together
+
+//given data
+m1=100*10^-3//masss(in kg) of particle1
+r=20*10^-2//separation(in m) between the two particles
+G=6.67*10^-11//universal constant of gravitation(in N-m^2/kg^2)
+
+//calculation
+//since the work done by the gravitational force is equal to change in the potential energy
+U=3*(-G*m1*m1/r)
+
+printf('the work done in bringing three particles is %3.1e J',U)
diff --git a/2084/CH11/EX11.2w/11_2w.sce b/2084/CH11/EX11.2w/11_2w.sce new file mode 100755 index 000000000..cbada15db --- /dev/null +++ b/2084/CH11/EX11.2w/11_2w.sce @@ -0,0 +1,20 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.2w
+//calculation of the distance from the earth's surface where resultant gravitational field due to the earth and the moon is zero
+
+//given data
+Me=6*10^24//mass(in kg) of the earth
+Mm=7.4*10^22//mass(in kg) of the moon
+d=4*10^5*10^3//distance(in m) between the earth and the moon
+
+//calculation
+//gravitational field due to the earth at that point
+//E1 = G*Me/x^2.........................(1)
+//gravitational field due to the moon at that point
+//E2 = G*Mm/(d-x)^2.....................(2)
+//E1 = E2.....given
+x=(d*sqrt(Me/Mm))/(1+sqrt(Me/Mm))
+
+printf('the distance from the earth surface where resultant gravitational field due to the earth and the moon is zero is %3.1e km',x*10^-3)
diff --git a/2084/CH11/EX11.4/11_4.sce b/2084/CH11/EX11.4/11_4.sce new file mode 100755 index 000000000..27e492a0c --- /dev/null +++ b/2084/CH11/EX11.4/11_4.sce @@ -0,0 +1,14 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.4
+//calculation of the gravitational field
+
+//given data
+F=2//gravitational force(in N)
+m=50*10^-3//mass(in kg) of the particle
+
+//calculation
+E=F/m//gravitational field
+
+printf('the gravitational field along the direction of force is %d N/kg',E)
diff --git a/2084/CH11/EX11.4w/11_4w.sce b/2084/CH11/EX11.4w/11_4w.sce new file mode 100755 index 000000000..8c658174b --- /dev/null +++ b/2084/CH11/EX11.4w/11_4w.sce @@ -0,0 +1,20 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.4w
+//calculation of the separation between the particles under mutual attraction
+
+//given data
+mA=1//mass(in kg) of particle A
+mB=2//mass(in kg) of particle B
+R=1//initial distance(in m) between the two particles
+vB=3.6*10^-2/(60*60)//speed(in m/s) of the particle B
+G=6.67*10^-11//universal constant of gravitation(in N-m^2/kg^2)
+
+//calculation
+v=(mB*vB)/mA//principle of conservation of linear momentum
+U1=-G*mA*mB/R//initial potential energy of the pair
+d=U1/(U1-(mB*vB*vB/2)-(mA*v*v/2))//principle of conservation of energy
+
+printf('the speed of particle A is %3.1e m/s',v)
+printf('\nthe separation between the particles under mutual attraction is %3.2f m',d)
diff --git a/2084/CH11/EX11.5w/11_5w.sce b/2084/CH11/EX11.5w/11_5w.sce new file mode 100755 index 000000000..cff8c4304 --- /dev/null +++ b/2084/CH11/EX11.5w/11_5w.sce @@ -0,0 +1,31 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.5w
+//calculation of the work done by an external agent
+
+//given data
+//E = (10 N/kg)(i + j).....given gravitational field
+Ex=10//value of X-component of gravitational field(in N/kg)
+Ey=10//value of Y-component of gravitational field(in N/kg)
+m=2//mass(in kg) of the gravitational field
+x0=0//value of X component of initial location(in m)
+x1=5//value of X component of final location(in m)
+y0=0//value of Y component of initial location(in m)
+y1=4//value of Y component of final location(in m)
+
+//calculation
+function Fx=fx(x)
+ Fx=m*Ex//value of X component of force
+endfunction
+
+function Fy=fy(x)
+ Fy=m*Ey//value of Y component of force
+endfunction
+
+//calculation
+W1=integrate('fx','x',x0,x1)//work done by X component of external force
+W2=integrate('fy','x',y0,y1)//work done by Y component of external force
+W=W1+W2
+
+printf('the work done by the external agent is %d J',-W)
diff --git a/2084/CH11/EX11.7/11_7.sce b/2084/CH11/EX11.7/11_7.sce new file mode 100755 index 000000000..d89e78537 --- /dev/null +++ b/2084/CH11/EX11.7/11_7.sce @@ -0,0 +1,15 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.7
+//calculation of the gravitational field due to the moon at its surface
+
+//given data
+M=7.36*10^22//mass(in kg) of the moon
+G=6.67*10^-11//universal constant of gravitation(in N-m^2/kg^2)
+a=1.74*10^6//radius(in m) of the moon
+
+//calculation
+E=G*M/(a*a)//formula of gravitational field
+
+printf('the gravitational field due to the moon at its surface is %3.2f N/kg',E)
diff --git a/2084/CH11/EX11.8/11_8.sce b/2084/CH11/EX11.8/11_8.sce new file mode 100755 index 000000000..160e36a8a --- /dev/null +++ b/2084/CH11/EX11.8/11_8.sce @@ -0,0 +1,18 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.8
+//calculation of the value of acceleration due to gavity
+
+//given data
+h=5*10^3//height(in m) above the earth's surface
+R=6400*10^3//radius(in m) of the earth
+g0=9.8//gravitational acceleration(in m/s^2) of the earth
+d=5*10^3//depth(in m) below the earth's surface
+
+//calculation
+gh=g0*(1-(2*h/R))//formula of gravitational acceleration at height h above the earth's surface
+gd=g0*(1-(d/R))//formula of gravitational acceleration at depth d below the earth's surface
+
+printf('the value of gravitational acceleration at height 5 km above the earth surface is %3.2f m/s^2',gh)
+printf('\nthe value of gravitational acceleration at depth 5 km below the earth surface is %3.2f m/s^2',gd)
diff --git a/2084/CH11/EX11.9/11_9.sce b/2084/CH11/EX11.9/11_9.sce new file mode 100755 index 000000000..fc7b539e7 --- /dev/null +++ b/2084/CH11/EX11.9/11_9.sce @@ -0,0 +1,19 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.9
+//calculation of the speed and time period of the satellite
+
+//given data
+h=600*10^3//height(in m) of the satellite
+M=6*10^24//mass(in kg) of the earth
+R=6400*10^3//radius(in m) of the earth
+G=6.67*10^-11//universal constant of gravitation(in N-m^2/kg^2)
+
+//calculation
+a=h+R//distance of satellite from centre of the earth
+v=sqrt(G*M/a)//speed of satellite
+T=(2*%pi*a)/v//time period of satellite
+
+printf('the speed of the satellite is %3.1e m/s or %3.1f km/s',v,v*10^-3)
+printf('\nthe time period of the satellite is %3.1e s',T)
diff --git a/2084/CH11/EX11.9w/11_9w.sce b/2084/CH11/EX11.9w/11_9w.sce new file mode 100755 index 000000000..a5976ab8b --- /dev/null +++ b/2084/CH11/EX11.9w/11_9w.sce @@ -0,0 +1,17 @@ +//developed in windows XP operating system 32bit
+//platform Scilab 5.4.1
+clc;clear;
+//example 11.9w
+//calculation of the maximum height attained by the particle
+
+//given data
+v0=9.8*10^3//speed(in m/s) the particle is fired
+R=6400*10^3//radius(in m) of the earth
+g=9.8//gravitational acceleration(in m/s^2) of the earth
+
+//calculation
+//by the principle of conservation of energy
+//(-G*M*m/R) + (m*v0*v0/2) = -(G*M*m/(R+H))
+H=(R*R/(R-(v0*v0/(2*g))))-R
+
+printf('the maximum height attained by the particle is %d km',H*10^-3)
|