diff options
Diffstat (limited to '2006/CH7')
-rwxr-xr-x | 2006/CH7/EX7.1/ex7_1.sce | 30 | ||||
-rwxr-xr-x | 2006/CH7/EX7.10/ex7_10.sce | 25 | ||||
-rwxr-xr-x | 2006/CH7/EX7.11/ex7_11.sce | 22 | ||||
-rwxr-xr-x | 2006/CH7/EX7.12/ex7_12.sce | 16 | ||||
-rwxr-xr-x | 2006/CH7/EX7.13/ex7_13.sce | 15 | ||||
-rwxr-xr-x | 2006/CH7/EX7.14/ex7_14.sce | 9 | ||||
-rwxr-xr-x | 2006/CH7/EX7.15/ex7_15.sce | 16 | ||||
-rwxr-xr-x | 2006/CH7/EX7.2/ex7_2.sce | 32 | ||||
-rwxr-xr-x | 2006/CH7/EX7.3/ex7_3.sce | 27 | ||||
-rwxr-xr-x | 2006/CH7/EX7.4/ex7_4.sce | 25 | ||||
-rwxr-xr-x | 2006/CH7/EX7.5/ex7_5.sce | 33 | ||||
-rwxr-xr-x | 2006/CH7/EX7.6/ex7_6.sce | 24 | ||||
-rwxr-xr-x | 2006/CH7/EX7.7/ex7_7.sce | 13 | ||||
-rwxr-xr-x | 2006/CH7/EX7.8/ex7_8.sce | 21 | ||||
-rwxr-xr-x | 2006/CH7/EX7.9/ex7_9.sce | 15 |
15 files changed, 323 insertions, 0 deletions
diff --git a/2006/CH7/EX7.1/ex7_1.sce b/2006/CH7/EX7.1/ex7_1.sce new file mode 100755 index 000000000..d4470ea89 --- /dev/null +++ b/2006/CH7/EX7.1/ex7_1.sce @@ -0,0 +1,30 @@ +clc;
+p1=1; // Initial pressure of fluid in MPa
+T1=250; // Initial temperture of fluid in degree celcius
+V=0.28; // Volume of container in m^3
+p2=0.35; // Initial pressure of the fluid in MPa
+// (a).Water
+v1=0.2327; // specific volume of vapour from steam table at state 1 in m^3/kg
+v2=v1; // constant volume process
+vf2=0.001079; vfg2=0.5232; // specific volume of vapour from steam table at state 2 in m^3/kg
+m=V/v1; // mass of steam
+x2=(v2-vf2)/vfg2; // quality of steam at state 2
+t2=138.88; // Final temperature of fluid in degree celcius (saturation temperature at p2)
+// following are the values taken from steam tables
+u1=2709.9; // specific internal energy at state 1 in kJ/kg
+s1=6.9247; // Specific entropy at state 1 in kJ/kg K
+uf2=582.95; ug2=2548.9; // specific internal energy at state 2 in kJ/kg
+sf2=1.7245; sg2=6.9405; // Specific entropy at state 2 in kJ/kg K
+u2=(1-x2)*uf2+x2*ug2; // specific internal energy at state 2
+s2=(1-x2)*sf2+x2*sg2; // specific enropy at state 2
+Q=m*(u2-u1); // Heat transferred
+S21=m*(s2-s1); // Entropy change
+disp ("kJ/kg K (round off error)",S21,"Entropy change = ","kJ (answer mentioned in the textbook is wrong)",Q,"Heat transferred = ',"oC",t2,"Final Temperature = ","(a).Water");
+// (b).Air
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+m=(p1*10^3*V)/(R*(T1+273)); // Mass of air
+T2=(p2/p1)*(273+T1); // Final temperature of air
+Q=m*Cvo*(T2-(T1+273)); // Heat transferred
+S21=m*Cvo*log (T2/(273+T1)); // Change in entropy
+disp ("kJ/kg K (round off error)",S21,"Entropy change = ","kJ (round off error)",Q,"Heat transferred = ',"K ",T2,"Final Temperature = ","(b).Air");
diff --git a/2006/CH7/EX7.10/ex7_10.sce b/2006/CH7/EX7.10/ex7_10.sce new file mode 100755 index 000000000..d09bc6010 --- /dev/null +++ b/2006/CH7/EX7.10/ex7_10.sce @@ -0,0 +1,25 @@ +clc;
+p1=3; // Pressure of fluid at inlet in bar
+T1=150; // Temperature of fluid at inlet in degree celcius
+V1=90; // Velocity of fluid at inlet in m/s
+eff_nozzle=0.85; // Nozzle efficiency
+k=1.4; // Index of reversible adiabatic process
+p2=1/3*p1;
+// (a).Steam
+// Following are taken from steam table
+h1=2761; // specific enthalpy in kJ/kg
+s1=7.0778;// specific entropy in kJ/kg K
+s2s=s1; // Isentropic process
+sf2s=1.3026; sfg2s=6.0568;// specific entropy in kJ/kg K
+hf2=417.46; hfg2=2258; // specific enthalpy in kJ/kg
+x2s=(s2s-sf2s)/sfg2s; // Quality of steam
+h2s=hf2+x2s*hfg2;
+V2s=sqrt (2000*(h1-h2s)+V1^2); // Isentropic Velocity
+V2=sqrt (eff_nozzle) *V2s; // Actual nozzle exit velocity
+disp ("m/s (round off error)",V2," Actual nozzle exit velocity = ","(a).Steam");
+// (b).Air
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Isentropic temperature
+V2s=sqrt ((2000*Cpo*((T1+273)-T2s))+V1^2); // Isentropic Velocity and (answer mentioned in the textbook is wrong)
+V2=sqrt (eff_nozzle) *V2s; // Actual nozzle exit velocity
+disp ("m/s (answer mentioned in the textbook is wrong)",V2," Actual nozzle exit velocity = ","(b).Air");
diff --git a/2006/CH7/EX7.11/ex7_11.sce b/2006/CH7/EX7.11/ex7_11.sce new file mode 100755 index 000000000..279f49b4e --- /dev/null +++ b/2006/CH7/EX7.11/ex7_11.sce @@ -0,0 +1,22 @@ +clc;
+p1=200; // Pressure of fluid at inlet in kPa
+T1=200; // Temperature of fluid at inlet in degree celcius
+V1=700; // Velocity of fluid at inlet in m/s
+V2=70; // Velocity of fluid at outlet in m/s
+// (a).Reversible Adiabatic process
+// state of steam entering diffuser (superheated)
+h1=2870.5;// specific enthalpy in kJ/kg
+s1=7.5066; // specific entropy in kJ/kg K
+h2=h1+(V1^2-V2^2)/2000; // From first and second laws
+s2=s1; // Isentropic peocess
+// From superheated table
+p2s=550; // Pressure of fluid at outlet in kPa
+T2=324; // Temperature of fluid at outlet in degree celcius
+disp ("oC",T2,"Temperature of fluid at outlet =","kPa",p2s,"Pressure of fluid at outlet = ","(a).Reversible adiabatic process");
+// (b).Actual diffusion
+// for the same change in K.E, from first law
+h2=3113.1;// specific enthalpy in kJ/kg
+p2=400; // Actual exit pressure in kPa
+t2=322.4; // from superheated table in degree celcius
+eff_d=(p2-p1)/(p2s-p1); // Diffuser efficiency
+disp ("%",eff_d*100,"Diffuser efficiency = ","oC",t2,"The exit temperature =","(b).Actual diffusion");
diff --git a/2006/CH7/EX7.12/ex7_12.sce b/2006/CH7/EX7.12/ex7_12.sce new file mode 100755 index 000000000..052d2258f --- /dev/null +++ b/2006/CH7/EX7.12/ex7_12.sce @@ -0,0 +1,16 @@ +clc;
+p1=1; // Pressure of fluid at inlet in bar
+T1=60; // Temperature of fluid at inlet in degree celcius
+p2=2.8; // Pressure of fluid at outlet in bar
+eff_d=0.80; // Diffuser efficiency
+k=1.4; // Index of reversible adiabatic process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+// (a).Actual Diffuser
+p2s=((p2-p1)/eff_d)+p1; // Isentropic pressure
+T2=(T1+273)*(p2s/p1)^((k-1)/k); // Exit temperature
+V1=sqrt (2000*Cpo*(T2-(T1+273))); // Initial Velocity
+disp ("m/s",V1,"Initial Velocity =","K",T2,"Temperature of air leaving diffuser =","(a).Actual Diffuser");
+// (b).Reversible Adiabatic diffuser
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Isentropic exit temperature
+V1=sqrt (2000*Cpo*(T2s-(T1+273))); // Initial Velocity
+disp ("m/s",V1,"Initial Velocity =","K",T2s,"Temperature of air leaving diffuser =","(b).Reversible Adiabatic diffuser");
diff --git a/2006/CH7/EX7.13/ex7_13.sce b/2006/CH7/EX7.13/ex7_13.sce new file mode 100755 index 000000000..3874c0005 --- /dev/null +++ b/2006/CH7/EX7.13/ex7_13.sce @@ -0,0 +1,15 @@ +clc;
+m=18; // mass flow rate of air in kg/s
+p1=3.6; // Pressure of fluid at inlet of turbine in MPa
+T1=800; // Temperature of fluid at inlet of turbine in Kelvin
+V1=100; // Velocity of fluid at inlet of turbine in m/s
+V2=150; // Velocity of fluid at outlet of turbine in m/s
+W=3.6; // Power output of turbine in MW
+p3=1.01; // pressure at diffuser outlet in bar
+k=1.4; // Index of reversible adiabatic process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+// (a) Pressure at diffuser inlet
+T2=((Cpo*T1)-((W*10^3)/m+(V2^2-V1^2)/2000))/Cpo; // Temperature at outlet of turbine
+T3=(T2+273)+((V2^2)/(2*Cpo*10^3)); // Temperature of fluid at diffuser inlet
+p2=p3*((T2+273)/T3)^(k/(k-1)); //pressure at diffuser inlet
+disp ("bar",p2,"(a).pressure at diffuser inlet =");
diff --git a/2006/CH7/EX7.14/ex7_14.sce b/2006/CH7/EX7.14/ex7_14.sce new file mode 100755 index 000000000..224a6d330 --- /dev/null +++ b/2006/CH7/EX7.14/ex7_14.sce @@ -0,0 +1,9 @@ +clc;
+T1=35; // Temperature of freon 12 before throttling in degree celcius
+T2=5; // Temperature of freon 12 after throttling in degree celcius
+// from property table of freon 12
+h1=69.49;// specific enthalpy in kJ/kg
+hf2=40.66; hfg2=148.86; // specific enthalpy in kJ/kg
+h2=h1; // throttling process
+x2=(h2-hf2)/hfg2; // Quality of Freon 12 vapour
+disp (x2,"Quality of Freon 12 vapour = ");
diff --git a/2006/CH7/EX7.15/ex7_15.sce b/2006/CH7/EX7.15/ex7_15.sce new file mode 100755 index 000000000..caddd920b --- /dev/null +++ b/2006/CH7/EX7.15/ex7_15.sce @@ -0,0 +1,16 @@ +clc;
+p2=276; // Pressure at inlet in kPa
+p=6.5; // gauge pressure at outlet in cm Hg
+T3=110; // Temperature at outlet in degree celcius
+pa=756; // Barometric pressure in mm Hg
+mc=760;// Mass of condensed steam in g
+ms=25; // Mass of separated water in g
+den=13600; // Density of mercury in kg/m^3
+g=9.81; // Acceleration due to gravity in m/s^2
+z=(pa*10^-3)+(p*10^-2);// absolute pressure in m Hg
+p3=den*g*z; // Pressure after throttling
+h3=2697.4;// specific enthalpy in kJ/kg
+hf2=545.31; hfg2=2175.2; // specific enthalpy in kJ/kg
+x2=(h3-hf2)/hfg2; // Quality of steam
+x1=(mc/(mc+ms))*x2; // Quality of steam in the main line
+disp (x1,"Quality of steam in the main line =");
diff --git a/2006/CH7/EX7.2/ex7_2.sce b/2006/CH7/EX7.2/ex7_2.sce new file mode 100755 index 000000000..e91e8996e --- /dev/null +++ b/2006/CH7/EX7.2/ex7_2.sce @@ -0,0 +1,32 @@ +clc;
+p1=1.0021; // Initial pressure of the fluid in MPa
+T1=180; // Initial temperature of the fluid in degree celcius
+m=0.5; // Mass of the fluid in kg
+p2=p1; // Constant pressure process
+// (a).Steam
+x1=0.8; // Quality of the steam at state 1
+// Following are the values taken from steam table
+vf1=0.001127; vfg1=0.1929; // specific volume of the steam in m^3/kg
+hf1=763.2; hfg1=2015; // specific enthalpy in kJ/kg
+sf1=2.1396; sfg1=4.4460; // specific entropy in kJ/kg K
+v1=vf1+x1*vfg1; // specific volume in m^3/kg
+h1=hf1+x1*hfg1; // specific enthalpy in kJ/kg
+s1=sf1+x1*sfg1; // specific entropy in kJ/kg K
+v2=2*v1; // Final volume of the fluid
+t2=410.5; // Final temperature of steam in degree celcius (from superheated steam table)
+h2=3286.4; // specific enthalpy in kJ/kg
+s2=7.525; // specific entropy in kJ/kg K
+S21=m*(s2-s1); // Change in entropy
+W=m*p1*10^3*(v2-v1); // Work done
+Q=m*(h2-h1); // Heat transferred
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",t2+273,"Final Temperature = ","(a).Steam");
+// (b).Air
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+V1=m*R*(T1+273)/(p1*10^3); // Initil volume
+V2=2*V1; // Final volume
+T2=(T1+273)*V2/V1; // Final temperature
+S21=m*Cpo*log (V2/V1); // Change in entropy
+W=p1*10^3*(V2-V1); // Work done
+Q=m*Cpo*(T2-(T1+273));// Heat transferred
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",T2,"Final Temperature = ","(b).Air");
diff --git a/2006/CH7/EX7.3/ex7_3.sce b/2006/CH7/EX7.3/ex7_3.sce new file mode 100755 index 000000000..4eb12283a --- /dev/null +++ b/2006/CH7/EX7.3/ex7_3.sce @@ -0,0 +1,27 @@ +clc;
+m=1.5; // Mass of the fluid in kg
+p1=1; // Initial pressure of fluid in bar
+T1=150; // Initial temperture of fluid in degree celcius
+v2=0.3; // Final specific volume in m^3/kg
+// (a).Steam
+// Following are the values taken from steam table
+u1=2582.8; // specific internal energy in kJ/kg
+s1=7.6134; // specific entropy in kJ/kg K
+vf2=0.001091; vfg2=0.3917; // specific volume of the steam in m^3/kg
+sf2=1.8418; sfg2=4.9961; // specific entropy in kJ/kg K
+uf2=631.7; ufg2=1927.8; // specific internal energy in kJ/kg
+x2=(v2-vf2)/vfg2; // Quality of steam at state 2
+s2=sf2+x2*sfg2; // specific entropy in kJ/kg K
+u2=uf2+x2*ufg2; // specific internal energy in kJ/kg
+S21=m*(s2-s1); // Change in entropy
+U21=m*(u2-u1); // Change in internal energy
+Q=(T1+273)*(S21); // Heat transferred
+W=Q-U21; // Work done
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","kJ",U21,"Change in internal energy = ","(a).Steam");
+// (b).Air
+R=0.287; // characteristic gas constant of air in kJ/kg K
+v1=(R*(T1+273))/(p1*10^2); // initial specific volume
+S21=m*R*log (v2/v1); // Change in entropy
+Q=(T1+273)*(S21); // Heat transferred
+W=Q; // Work done
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","kJ",U21,"Change in internal energy = ","(b).Air");
diff --git a/2006/CH7/EX7.4/ex7_4.sce b/2006/CH7/EX7.4/ex7_4.sce new file mode 100755 index 000000000..1a6b28b5b --- /dev/null +++ b/2006/CH7/EX7.4/ex7_4.sce @@ -0,0 +1,25 @@ +clc;
+m=1.5; // Mass of the fluid in kg
+p1=1.6; // Initial pressure of fluid in MPa
+T1=250; // Initial temperture of fluid in degree celcius
+p2=150; // Initial pressure of the fluid in kPa
+// (a).Steam
+// Following are the values taken from steam table
+// state 1 is superheated
+u1=2692.3; // specific internal energy in kJ/kg
+s1=6.6732; // specific entropy in kJ/kg K
+v1=0.14184; // specific volume of the steam in m^3/kg
+// State 2 is wet (s1=s2<sg2)
+T2=111.37; // Final temperature of steam in degree celcius
+sf2=1.4336; sfg2=5.7897; // specific entropy in kJ/kg K
+uf2=466.94; ufg2=2052.7; // specific internal energy in kJ/kg
+x2=(s1-sf2)/sfg2; // Quality of steam at state 2
+u2=uf2+x2*ufg2; // specific internal energy in kJ/kg
+W=-m*(u2-u1);// Work done
+disp ("kJ",W,"Work done = ","K",T2+273,"Final temperature of steam =","(a).Steam");
+// (b).Air
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+k=1.4; // index of reversible adiabatic process
+T2=(T1+273)*((p2*10^-3)/p1)^((k-1)/k); // Final temperature of air
+W=-m*Cvo*(T2-(T1+273)); // Work done
+disp ("kJ",W,"Work done = ","K",T2,"Final temperature of =","(b).Air");
diff --git a/2006/CH7/EX7.5/ex7_5.sce b/2006/CH7/EX7.5/ex7_5.sce new file mode 100755 index 000000000..d5c458877 --- /dev/null +++ b/2006/CH7/EX7.5/ex7_5.sce @@ -0,0 +1,33 @@ +clc;
+m=1.5; // Mass of the fluid in kg
+p1=1.6; // Initial pressure of fluid in MPa
+T1=250; // Initial temperture of fluid in degree celcius
+p2=150; // Initial pressure of the fluid in kPa
+n=1.25; // Index of polytropic process
+// (a).Steam
+// Following are the values taken from steam table
+// state 1 is superheated
+u1=2692.3; // specific internal energy in kJ/kg
+s1=6.6732; // specific entropy in kJ/kg K
+v1=0.14184; // specific volume of the steam in m^3/kg
+v2=v1*(p1/(p2*10^-3))^(1/n); // specific volume of the steam at state 2
+// State 2 is wet
+T2=111.37; // Final temperature of steam in degree celcius
+vf2=0.0010531; vfg2=1.1582; // specific volume of the steam in m^3/kg
+x2=(v2-vf2)/vfg2; // Quality of steam at state 2
+sf2=1.4336; sfg2=5.7897; // specific entropy in kJ/kg K
+uf2=466.94; ufg2=2052.7; // specific internal energy in kJ/kg
+s2=sf2+x2*sfg2; // specific entropy in kJ/kg K
+u2=uf2+x2*ufg2; // specific internal energy in kJ/kg
+W=m*((p2*v2)-(p1*10^3*v1))/(1-n); // Work done
+Q=m*(u2-u1)+W; // Heat ttransferred
+S21=m*(s2-s1); // Change in entropy
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",T2+273,"Final Temperature = ","(a).Steam");
+// (b).Air
+R=0.287; // characteristic gas constant of air in kJ/kg K
+Cvo=0.7165; // Specific heat at constant volume in kJ/kg K
+T2=(T1+273)*((p2*10^-3)/p1)^((n-1)/n); // Final temperature of air
+W=m*R*(T2-(T1+273))/(1-n); // Work done
+Q=m*Cvo*(T2-(T1+273))+W; // Heat transferred
+S21=m*(Cvo+R/(1-n))*log (T2/(T1+273)); // Change in entropy
+disp ("kJ",Q,"Heat transferred = ","kJ",W,"Work done = ","kJ/K",S21,"Change in entropy = ","K",T2,"Final Temperature = ","(b).Air");
diff --git a/2006/CH7/EX7.6/ex7_6.sce b/2006/CH7/EX7.6/ex7_6.sce new file mode 100755 index 000000000..d2ed3e722 --- /dev/null +++ b/2006/CH7/EX7.6/ex7_6.sce @@ -0,0 +1,24 @@ +clc;
+m=1; // Massflow rate of the steam in kg/s
+p1=3.5; // Pressure at inlet in MPa
+T1=400; // Temperature at inlet in degree celcius
+V1=250; // Velocity of stesm at inlet in m/s
+p2=50; // Pressure at outlet in kPa
+T2=100; // Temperature at outlet in degree celcius
+V2=30; // Velocity of stesm at outlet in m/s
+// For actual expansion in the turbine
+h1=3222.3; h2=2682.5; // specific enthalpy in kJ/kg at inlet and exit
+wa=h1-h2+(V1^2-V2^2)/2000; // Work done
+W=m*wa; // Power output
+disp ("kW",W,"Power output of the turbine = (Error in textbook)");
+// For reversible adiabatic expansion
+// Following are the values taken from steam table
+s1=6.8405; // specific entropy in kJ/kg K
+s2s=s1; // Isentropic expansion
+sf2=1.091; sfg2=6.5029; // specific entropy in kJ/kg K
+hf2=340.49; hfg2=2305.4; // specific enthalpy in kJ/kg
+x2s=(s1-sf2)/sfg2; // Quality of steam at state 2
+h2s=hf2+x2s*hfg2; // specific enthalpy in kJ/kg
+ws=h1-h2s+(V1^2-V2^2)/2000; // Isentropic Work done
+eff_isen=wa/ws; // Isentropic efficiency of the turbine
+disp("%",eff_isen*100,"Isentropic efficiency of the turbine = (Error in textbook)")
diff --git a/2006/CH7/EX7.7/ex7_7.sce b/2006/CH7/EX7.7/ex7_7.sce new file mode 100755 index 000000000..07d749e72 --- /dev/null +++ b/2006/CH7/EX7.7/ex7_7.sce @@ -0,0 +1,13 @@ +clc;
+m=1; // Massflow rate of the steam in kg/s
+p1=3.5; // Pressure at inlet in bar
+T1=160; // Temperature at inlet in degree celcius
+p2=1; // Pressure at outlet in bar
+Cpo=1.005; // Specific heat at constant pressure in kJ/kg K
+eff_isen=0.85; // Isentropic efficiency of the turbine
+k=1.4; // index of isentropic process
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Final temperature after isentropic expansion
+Ws=m*Cpo*((T1+273)-T2s); // Isentropic power developed
+Wa=eff_isen*Ws; // Actual power developed
+T2=(T1+273)-(Wa/(m*Cpo)); // Final temperature after expansion
+disp ("K",T2,"Final temperature after expansion = ","kW",Wa,"Actual power developed (Error in textbook)=");
diff --git a/2006/CH7/EX7.8/ex7_8.sce b/2006/CH7/EX7.8/ex7_8.sce new file mode 100755 index 000000000..3c883ef58 --- /dev/null +++ b/2006/CH7/EX7.8/ex7_8.sce @@ -0,0 +1,21 @@ +clc;
+m=0.05; // mass flowrate of Freon 12 in kg/s
+p1=300; // Pressure of Freon 12 at inlet in kpa
+t1=5; // Temperature of Freon 12 at inlet in degree celcius
+p2=1.2; // Pressure of Freon 12 at outlet in MPa
+t2=80; // Temperature of Freon 12 at outlet in degree celcius
+W=-2.3; // Power consumption of compressor in kW
+// (a).Heat transfer from the body of compressor to environment
+// From the table of properties of Freon 12
+h1= 190.8; h2=230.4; // specific enthalpy in kJ/kg
+s1=0.71; s2=0.7514 // specific entropy in kJ/kg K
+Q=m*(h2-h1)+W; // Heat transfer
+disp ("kW",Q,"(a).Heat transfer from the body of compressor to environment =");
+// (b).Adiabatic efficiency of the compressor
+// For adiabatic compression p2=1.2Mpa,s2s=s1
+t2s=61.7;// Temperature of Freon 12 at outlet in degree celcius
+h2s=216.14; // specific enthalpy in kJ/kg
+ws=(h2s-h1); // Reversible adiabatic work
+wa=W/m; // Actual work
+eff_com=abs (ws/wa); // Adiabatic efficiency
+disp ("%",eff_com*100,"(b).Adiabatic efficiency of the compressor = ");
diff --git a/2006/CH7/EX7.9/ex7_9.sce b/2006/CH7/EX7.9/ex7_9.sce new file mode 100755 index 000000000..d7403351c --- /dev/null +++ b/2006/CH7/EX7.9/ex7_9.sce @@ -0,0 +1,15 @@ +clc;
+p1=1; // Pressure of air at inlet of compressor in bar
+T1=30; // Temperature of air at inlet of compressor in degree celcius
+p2=12; // Delivery pressure of air in bar
+T2=400; // Temperature of air at inlet of compressor in degree celcius
+V2=90; // Velocity of air at exit in m/s
+w=3740; // Power input to compressor in kW
+k=1.4; // Index of reversible adiabatic process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+wa=Cpo*(T2-T1)+V2^2/2000; // Actual specific work input
+m=w/wa; // Mass flow rate of air
+T2s=(T1+273)*(p2/p1)^((k-1)/k);// Isentropic discharge temperature
+ws=Cpo*(T2s-(T1+273))+V2^2/2000; // Isentropic work
+eff_com=ws/wa; // Isentrpic efficiency
+disp ("%",eff_com*100,"Isentrpic efficiency of compressor =","K",T2s,"Isentropic discharge temperature = ");
|