summaryrefslogtreecommitdiff
path: root/2006/CH10
diff options
context:
space:
mode:
Diffstat (limited to '2006/CH10')
-rwxr-xr-x2006/CH10/EX10.1/ex10_1.sce10
-rwxr-xr-x2006/CH10/EX10.10/ex10_10.sce16
-rwxr-xr-x2006/CH10/EX10.11/ex10_11.sce30
-rwxr-xr-x2006/CH10/EX10.12/ex10_12.sce41
-rwxr-xr-x2006/CH10/EX10.2/ex10_2.sce13
-rwxr-xr-x2006/CH10/EX10.3/ex10_3.sce24
-rwxr-xr-x2006/CH10/EX10.5/ex10_5.sce10
-rwxr-xr-x2006/CH10/EX10.6/ex10_6.sce24
-rwxr-xr-x2006/CH10/EX10.7/ex10_7.sce36
-rwxr-xr-x2006/CH10/EX10.8/ex10_8.sce30
-rwxr-xr-x2006/CH10/EX10.9/ex10_9.sce21
11 files changed, 255 insertions, 0 deletions
diff --git a/2006/CH10/EX10.1/ex10_1.sce b/2006/CH10/EX10.1/ex10_1.sce
new file mode 100755
index 000000000..fde02f7dc
--- /dev/null
+++ b/2006/CH10/EX10.1/ex10_1.sce
@@ -0,0 +1,10 @@
+clc;
+m=100; // Mass of water in kg
+T0=90; // Initial temperature of water in degree celcius
+T=30; // temperature of Surroundings in degree celcius
+C=4.1868; // Specific heat in kJ/kg K
+AE=m*C*((T0-T)-(T+273)*log ((T0+273)/(T+273))); // Available energy
+Q=m*C*(T0-T); // Heat supplied
+UE=Q-AE; // Unavailable energy
+disp ("kJ",AE,"Available energy =");
+disp ("kJ",UE,"Unavailable energy = ","kJ",Q,"Heat supplied = ");
diff --git a/2006/CH10/EX10.10/ex10_10.sce b/2006/CH10/EX10.10/ex10_10.sce
new file mode 100755
index 000000000..9a161ba4d
--- /dev/null
+++ b/2006/CH10/EX10.10/ex10_10.sce
@@ -0,0 +1,16 @@
+clc;
+// State after reversible adiabatic expansion
+p2=50; // pressure in kPa
+s2s=6.4844; s1=6.4844; s2=6.944; // specific entropy in kJ/kg K
+x2s=0.829; // Quality of steam
+h2s=2252.6; h1=3256.6; // specific enthalpy in kJ/kg
+T2=81.33; T0=27; // Temperature in degree celcius
+ws=h1-h2s; // Reversible adiabatic work
+wa=831.2; // Actual work output in kJ/kg
+d_AE=979.1; // Decrease in availability in kJ/LG
+eff_I=wa/ws; // First law efficiency of turbine
+eff_II=wa/d_AE; // Second law efficiency of turbine
+disp ("%",eff_II*100,"Second law efficiency of turbine = ","%",eff_I*100,"First law efficiency of turbine = ");
+w2srev2=(T2-T0)*(s2-s1); // Negative work
+w1rev2=ws-w2srev2; // Decrease in availability
+disp ("kJ/kg",w1rev2,"Dcresase in Availability = ","kJ/kg",w2srev2,"Negative work = ");
diff --git a/2006/CH10/EX10.11/ex10_11.sce b/2006/CH10/EX10.11/ex10_11.sce
new file mode 100755
index 000000000..12d1c95f1
--- /dev/null
+++ b/2006/CH10/EX10.11/ex10_11.sce
@@ -0,0 +1,30 @@
+clc;
+p1=100; // Pressure at inlet in kPa
+T1=30; // Temperature at inlet in degree celcius
+V1=0; // Velocity at inlet in m/s
+p2=350; // Pressure at outlet in kPa
+T2=141; // Temperature at exit in degree celcius
+V2=90; // Velocity at exit in m/s
+p0=100; // Pressure of Surroundings in kPa
+T0=30; // temperature of Surroundings in degree celcius
+k=1.4; // Index of the Isentropic compression process
+Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant of air in kJ/kg K
+// (a).Adiabatic or polytropic compression
+T2s=(T1+273)*(p2/p1)^((k-1)/k); // Temperature after isentropic compression
+disp ("T2s>T2. Hence there is cooling . Compression is polytropic.","K",T2s,"Temperature after isentropic compression =", "(a).Adiabatic or polytropic compression");
+// (b).The first law efficiency of the compressor
+wa=Cpo*(T1-T2)-V2^2/2000; //Actual work of compression
+wT=(-R*(T1+273)*log (p2/p1))-(V2^2/2000); // Isothermal work
+eff_Ilaw=wT/wa; // The first law efficiency of the compressor
+disp ("%",eff_Ilaw,"(b).The first law efficiency of the compressor = ");
+// (c).Minimum work input & Irreversibility
+d_AE=(Cpo*(T1-T2))+((T0+273)*((R*log (p2/p1))-(Cpo*log ((T2+273)/(T1+273)))))-V2^2/2000; // decrease in availability
+wmin=d_AE; // Minimum work input
+wrev=wmin;
+I=wrev-wa; // Irreversibility
+disp ("kJ/kg",I,"Irreversibility =","kJ/kg",wmin,"Minimum work input =","(c).Minimum work input & Irreversibility");
+// (d).Second law efficiency of the compressor
+eff_IIlaw=wmin/wa; // Second law efficiency of the compressor
+disp ("%",eff_IIlaw*100,"(d).Second law efficiency of the compressor =");
+
diff --git a/2006/CH10/EX10.12/ex10_12.sce b/2006/CH10/EX10.12/ex10_12.sce
new file mode 100755
index 000000000..d2252bef6
--- /dev/null
+++ b/2006/CH10/EX10.12/ex10_12.sce
@@ -0,0 +1,41 @@
+clc;
+T0=313; // Surroundings temperature in kelvin
+TL=233; // Refrigerated space temperature in kelvin
+QL=3.5167; // Refrigeration load in kW
+// (a).Carnot cycle
+COPcarnot=TL/(T0-TL); // COP of carnot cycle
+Wcarnot=QL/COPcarnot; // Work done
+Q0=QL+Wcarnot; // Heat rejected
+d_SL=-QL/TL;// Entropy change of refrigerated space
+d_S0=Q0/T0; //Entropy change of surroundings
+d_Sgen= d_SL+ d_S0; // Entropy generation
+disp (COPcarnot,"COP of carnot cycle = ","kW",Wcarnot,"Work done = ","(a).Carnot cycle");
+printf (" \n Entropy generation = %d \n \n kJ/K s \n",d_Sgen);
+// (b).Vapour compression cycle
+// From Freon-12 property table & figure 10.17
+p1=0.0642; p2=0.9607; // Pressure in MPa
+h1=169.5; h3=74.5; // specific enthalpy in kJ/kg
+s1=0.7269; s3=0.2716;// specific entropy in kJ/kg K
+// By calculations s2=s1 gives the following from property table
+t2=58.9; // Temperature in degree celcius
+h2=217.6; // specific enthalpy in kJ/kg
+// From h4=h3 gives the following from chart
+h4=h3;
+x4=0.44; // Quality of vapour
+s4=0.3195;// specific entropy in kJ/kg K
+m=QL/(h1-h4); // Mass flow rate of refrigerant
+W=m*(h2-h1); // Work done of vapour compression cycle
+COP=QL/W; // COP of vapour compression cycle
+QH=QL+W; // Heat rejected to surroundings
+d_SL=-QL/TL;// Entropy change of refrigerated space
+d_S0=QH/T0; //Entropy change of surroundings
+d_Sgen= d_SL+ d_S0; // Entropy generation
+disp (COP,"COP of vapour compression cycle = ","kW",W,"Work done = ","(b).Vapour compression cycle");
+printf (" \n Entropy generation = %f \n \n kJ/K s \n",d_Sgen);
+// (c).Difference in work = Lost work of the cycle
+d_work=W-Wcarnot; // Difference in work
+LWcycle=QH-T0*QL/TL; // Lost work of the cycle
+disp ("which is same as Difference in work","kW",LWcycle,"Lost work of the cycle= ","kW",d_work,"Difference in work = ","(c).Difference in work = Lost work of the cycle");
+// (d).Second Law efficiency of the vapour compression cycle
+eff_II=COP/COPcarnot; //Second Law efficiency
+disp ("%",eff_II*100,"(d).Second Law efficiency of the vapour compression cycle = ");
diff --git a/2006/CH10/EX10.2/ex10_2.sce b/2006/CH10/EX10.2/ex10_2.sce
new file mode 100755
index 000000000..45c31dff8
--- /dev/null
+++ b/2006/CH10/EX10.2/ex10_2.sce
@@ -0,0 +1,13 @@
+clc;
+T=250; // Evaporation teemperature of water in degree celcius
+Ta=1250; // Initial temperature of combustion gas in degree celcius
+Tb=350; // Final temperature of combustion gas in degree celcius
+C=1.08; // Specific heat of gas in kJ/kg K
+T0=30; // temperature of Surroundings in degree celcius
+hfg=1716.2; // Enthalpy of evaporation at T temperature
+del_SH2O=hfg/(T+273); // Entropy change of water
+mgas=hfg/(C*(Ta-Tb)); // Mass of gas
+del_Sgas=mgas*C*log ((Tb+273)/(Ta+273)); // Enthalpy change of gas
+del_Stotal=del_SH2O+del_Sgas; // Total entropy change
+l_AE=(T0+273)*del_Stotal; // Loss of available energy
+disp ("kJ",l_AE,"Loss of available energy = ");
diff --git a/2006/CH10/EX10.3/ex10_3.sce b/2006/CH10/EX10.3/ex10_3.sce
new file mode 100755
index 000000000..52d12459f
--- /dev/null
+++ b/2006/CH10/EX10.3/ex10_3.sce
@@ -0,0 +1,24 @@
+clc;
+Cp=1.1; // Specific heat of combustion gas in kJ/kg K
+T3=1600; // Initial temperature of combustion gas in Kelvin
+T4=1150; // Final temperature of combustion gas in Kelvin
+p1=0.1; // Pressure at inlet of boiler in MPa
+p2=8;// Pressure at outlet of boiler in MPa
+T2=600; // Temperature at outlet of boiler in degree celcius
+m=1; // Mass of water in kg
+T0=298; // temperature of Surroundings in kelvin
+// (b).mass flow rate of gases per kg of water
+// From steam table
+h1=2758; h2=3642;// specific enthalpy in kJ/kg
+s1=5.7432; s2=7.0206; // specific entropy in kJ/kg K
+mgas=(h2-h1)/(Cp*(T3-T4)); //mass flow rate of gases per kg of water
+disp ("kg gas / kg water",mgas,"(b).mass flow rate of gases per kg of water =");
+// (c). Degrease in Available energy
+S21=s2-s1; // Change in entropy of water
+S34=mgas*Cp*log (T3/T4); // Change in entropy of gases
+UEgases=T0*S34; // UnAvailable energy of gas
+UEsteam=T0*S21; // UnAvailable energy of steam
+d_AE=UEsteam-UEgases; // Degrease in Available energy
+disp ("kJ/K",-S34,"Change in entropy of gas = ","kJ/K",S21,"Change in entropy of water = ","(c).");
+disp ("kJ",UEsteam,"Unavailable energy of steam =","kJ",UEgases,"Unavailable energy of gas = ");
+disp ("kJ",d_AE," Degrease in Available energy = ");
diff --git a/2006/CH10/EX10.5/ex10_5.sce b/2006/CH10/EX10.5/ex10_5.sce
new file mode 100755
index 000000000..b9f433b0d
--- /dev/null
+++ b/2006/CH10/EX10.5/ex10_5.sce
@@ -0,0 +1,10 @@
+clc;
+T=700;// Exhaust gas temperature in degree celcius
+p=120;// Exhaust gas pressure in kPa
+Cpo=1.089; // Specific heat at constant pressure in kJ/kg K
+R=0.287; // characteristic gas constant in kJ/kg K
+p0=100; // Pressure of Surroundings in kPa
+T0=30; // temperature of Surroundings in degree celcius
+Cvo=Cpo-R; // Specific heat at constant volume
+AE=(Cvo*(T-T0))+(p0*R*((T+273)/p-(T0+273)/p0))-((T0+273)*((Cpo*log((T+273)/(T0+273)))-(R*log (p/p0)))); // Available energy
+disp ("kJ",AE,"Available energy in Exhaust gas =");
diff --git a/2006/CH10/EX10.6/ex10_6.sce b/2006/CH10/EX10.6/ex10_6.sce
new file mode 100755
index 000000000..2b9f2302b
--- /dev/null
+++ b/2006/CH10/EX10.6/ex10_6.sce
@@ -0,0 +1,24 @@
+clc;
+p1=450; // Initial pressure in kPa
+T=600; // Initial temperature in kelvin
+V1=0.01; // Initial volume in m^3
+TR=1200; // Temperature of heat source in Kelvin
+V2=0.02; // Final volume in m^3
+p0=100; // Pressure of Surroundings in kPa
+T0=300; // temperature of Surroundings in kelvin
+// Useful Work
+W=p1*V1*log (V2/V1); // Actual work
+Wsurr=p0*(V2-V1); // Surrounding work
+Wu=W-Wsurr; // Useful work
+disp ("kJ",Wu,"Useful Work for the process =");
+// Reversible work
+Q=W; // For isothermal process
+S21=Q/T; // Entropy change of system
+Wrev=T0*S21-Wsurr+Q*(1-T0/TR); // reversible work
+disp ("kJ",Wrev,"Reversible work for the provess =");
+// Irreversibility of the process
+I=Wrev-Wu; // Irreversibility
+disp ("kJ",I,"Irreversibility of the process = ");
+// Entropy generation
+del_Sgen=S21-Q/TR;//Entropy generation
+disp ("kJ/kg",del_Sgen,"Entropy generation of the process = ");
diff --git a/2006/CH10/EX10.7/ex10_7.sce b/2006/CH10/EX10.7/ex10_7.sce
new file mode 100755
index 000000000..24394e7c2
--- /dev/null
+++ b/2006/CH10/EX10.7/ex10_7.sce
@@ -0,0 +1,36 @@
+clc;
+// (i).Irreversibility in Turbine
+p1=9; // Steam pressure at turbine inlet in MPa
+T1=450; // Steam temperature at turbine inlet in degree celcius
+p2=50; // Steam pressure at turbine outlet in MPa
+x2=0.95; // Quality of steam
+p0=100; // Pressure of Surroundings in kPa
+T0=300; // temperature of Surroundings in kelvin
+q=-10; // Heat loss in kJ/kg
+// (a).Decrease in availability
+// from steam table
+h1=3256.6; h2=2415.4;// specific enthalpy in kJ/kg
+s1=6.4844; s2=6.944; // specific entropy in kJ/kg K
+d_AE=(h1-h2)-(T0*(s1-s2)); // Decrease in availability
+disp ("kJ/kg",d_AE,"(a).Decrease in availability =","(i).Irreversibility in turbine");
+// (b).Maxximum work output
+wrev=d_AE; //Maxximum work output
+disp ("kJ/kg",wrev,"(b).Maxximum work output =");
+// (c).Actual work output
+w=(h1-h2)+q; // From SSSF energy equation
+disp ("kJ/kg",w,"(c).Actual work output = ");
+// (d).Irreversibility
+I=wrev-w; //Irreversibility
+disp ("kJ/kg",I,"(d).Irreversibility = ");
+// (ii).Ammonia compressor
+T1=-10; // Temperature at inlet in degree celcius
+p2=1.554; // Pressure at outlet in MPa
+T2=140; // Temperature at outlet in degree celcius
+T0=298; // temperature of Surroundings in kelvin
+//from ammonia tables
+h1=1433; h2=1752;// specific enthalpy in kJ/kg
+s1=5.477; s2=5.655; // specific entropy in kJ/kg K
+wactual=-(h2-h1); // Actual work
+wmin=-((h2-h1)-(T0*(s2-s1)));// mimimum work
+I=wmin-wactual;// Irreversibility
+disp ("kJ/kg",I,"Irreversibility =","kJ/kg",wmin,"Minimum work =","kJ/kg",wactual,"Actual work = ","(ii).Ammonia compressor");
diff --git a/2006/CH10/EX10.8/ex10_8.sce b/2006/CH10/EX10.8/ex10_8.sce
new file mode 100755
index 000000000..ba70fb25b
--- /dev/null
+++ b/2006/CH10/EX10.8/ex10_8.sce
@@ -0,0 +1,30 @@
+clc;
+Cp=1.1; // Specific heat of combustion gas in kJ/kg K
+T3=1600; // Initial temperature of combustion gas in Kelvin
+T4=1150; // Final temperature of combustion gas in Kelvin
+p1=0.1; // Pressure at inlet of boiler in MPa
+p2=8;// Pressure at outlet of boiler in MPa
+T2=600; // Temperature at outlet of boiler in degree celcius
+m=1; // Mass of water in kg
+T0=298; // temperature of Surroundings in kelvin
+// From steam table
+h1=2758; h2=3642;// specific enthalpy in kJ/kg
+s1=5.7432; s2=7.0206; // specific entropy in kJ/kg K
+mgas=(h2-h1)/(Cp*(T3-T4)); //mass flow rate of gases per kg of water
+S21=s2-s1; // Change in entropy of water
+S34=mgas*Cp*log (T3/T4); // Change in entropy of gases
+// (a).Decrease in availability of gases
+d_AEgas=mgas*Cp*(T3-T4)-T0*S34//Decrease in availability of gases
+disp ("kJ",d_AEgas,"(a).Decrease in availability of gases = ");
+// (b).Decrease in availability of water
+d_AEwater=(h1-h2)-T0*(s1-s2);// Decrease in availability of water
+disp ("kJ",d_AEwater,"(b).Decrease in availability of water =");
+// (c).Reversible work for the process
+Wrev=d_AEgas+d_AEwater; //Reversible work for the process
+disp ("kJ",Wrev,"(c).Reversible work for the process=");
+// (d).Actual work for the process
+W=0; // Actual work
+disp ("kJ",W,"(d).Actual work for the process =");
+// (e).Irreversibility
+I=Wrev-W; //Irreversibility
+disp ("kJ",I,"(e).Irreversibility = ");
diff --git a/2006/CH10/EX10.9/ex10_9.sce b/2006/CH10/EX10.9/ex10_9.sce
new file mode 100755
index 000000000..fb04343c5
--- /dev/null
+++ b/2006/CH10/EX10.9/ex10_9.sce
@@ -0,0 +1,21 @@
+clc;
+TH=600; // Temperature of heat sorce in degree celcius
+T3=311.06; // Boiler temperature in degree celcius
+p3=10; // Boiler pressure in MPa
+T4=32.88; // Condensor temperature in degree celcius
+p4=5; // Condensor pressure in kPa
+T0=288;// Temperature of surroundings in kelvin
+// From steam table and refer figure 10.10 for states
+h1=137.82; h2=147.82; h3=2724.7; hf4=197.82; hfg4=2423.7; h4=1913.6; // specific enthalpy in kJ/kg
+s1=0.4764; s2=s1; s3=5.6141; s4=s3; sf4=0.4764; sfg4=7.9187; s4=6.2782; // specific entropy in kJ/kg K
+wT=h3-h4; // Turbine work
+wp=h2-h1; // Pump work
+wnet=wT-wp; // Net work
+qH=h3-h2; // Heat supplied in boiler
+qL=h4-h1; // Heat rejected in condensor
+Wrev_Wpump=T0*(s2-s1);
+Wrev_Wboiler=T0*(s3-s2)-T0*qH/(TH+273);
+Wrev_Wturbine=T0*(s4-s3);
+Wrev_Wcondenser=T0*(s1-s4)+qL;
+Wrev_Wcycle=Wrev_Wpump+Wrev_Wboiler+Wrev_Wturbine+Wrev_Wcondenser;
+disp ("kJ/kg",Wrev_Wcycle,"The lost (Wrev-W)for the overall cycle = ","kJ/kg",Wrev_Wcondenser,"The lost (Wrev-W)for the condensor = ","kJ/kg",Wrev_Wturbine,"The lost (Wrev-W)for the Turbine = ","kJ/kg",Wrev_Wboiler,"The lost (Wrev-W)for the Boiler = ","kJ/kg",Wrev_Wpump,"The lost (Wrev-W)for the Pump = ");