summaryrefslogtreecommitdiff
path: root/20/CH2/EX2.29.130/example2_29_pg130.sce
diff options
context:
space:
mode:
Diffstat (limited to '20/CH2/EX2.29.130/example2_29_pg130.sce')
-rwxr-xr-x20/CH2/EX2.29.130/example2_29_pg130.sce31
1 files changed, 31 insertions, 0 deletions
diff --git a/20/CH2/EX2.29.130/example2_29_pg130.sce b/20/CH2/EX2.29.130/example2_29_pg130.sce
new file mode 100755
index 000000000..adc5b2950
--- /dev/null
+++ b/20/CH2/EX2.29.130/example2_29_pg130.sce
@@ -0,0 +1,31 @@
+// Example2_29_pg130.sce
+// Positive and negative sequence voltages
+// Theory of Alternating Current Machinery by Alexander Langsdorf
+// First Edition 1999, Thirty Second reprint
+// Tata McGraw Hill Publishing Company
+// Example in Page 130
+
+
+clear; clc; close;
+
+// Given data
+
+V_1 = 1000 + %i*50;
+V_2 = -800 + %i*100;
+V_3 = -200 - %i*150;
+a = cos(2*%pi/3) + %i*sin(2*%pi/3);
+
+// Calculations
+
+disp('According to Equations 2-88 and 2-89 in page 130');
+V_1p = (V_1 + V_2*a + V_3*a^2)/3;
+V_1n = (V_1 + V_2*a^(-1) + V_3*a^(-2))/3;
+
+printf("\n\nPositive sequence voltage is = %0.4f /_ %0.2f Volts \nNegative sequence voltage is = %0.4f /_ %0.2f Volts\n", abs(V_1p),atan(imag(V_1p)/real(V_1p))*180/%pi, abs(V_1n),atan(imag(V_1n)/real(V_1n))*180/%pi);
+
+// Result
+// According to Equations 2-88 and 2-89 in page 130
+//
+//
+// Positive sequence voltage is = 452.7740 /_ -19.11 Volts
+// Negative sequence voltage is = 605.5265 /_ 19.11 Volts