diff options
Diffstat (limited to '20/CH2/EX2.29.130/example2_29_pg130.sce')
-rwxr-xr-x | 20/CH2/EX2.29.130/example2_29_pg130.sce | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/20/CH2/EX2.29.130/example2_29_pg130.sce b/20/CH2/EX2.29.130/example2_29_pg130.sce new file mode 100755 index 000000000..adc5b2950 --- /dev/null +++ b/20/CH2/EX2.29.130/example2_29_pg130.sce @@ -0,0 +1,31 @@ +// Example2_29_pg130.sce +// Positive and negative sequence voltages +// Theory of Alternating Current Machinery by Alexander Langsdorf +// First Edition 1999, Thirty Second reprint +// Tata McGraw Hill Publishing Company +// Example in Page 130 + + +clear; clc; close; + +// Given data + +V_1 = 1000 + %i*50; +V_2 = -800 + %i*100; +V_3 = -200 - %i*150; +a = cos(2*%pi/3) + %i*sin(2*%pi/3); + +// Calculations + +disp('According to Equations 2-88 and 2-89 in page 130'); +V_1p = (V_1 + V_2*a + V_3*a^2)/3; +V_1n = (V_1 + V_2*a^(-1) + V_3*a^(-2))/3; + +printf("\n\nPositive sequence voltage is = %0.4f /_ %0.2f Volts \nNegative sequence voltage is = %0.4f /_ %0.2f Volts\n", abs(V_1p),atan(imag(V_1p)/real(V_1p))*180/%pi, abs(V_1n),atan(imag(V_1n)/real(V_1n))*180/%pi); + +// Result +// According to Equations 2-88 and 2-89 in page 130 +// +// +// Positive sequence voltage is = 452.7740 /_ -19.11 Volts +// Negative sequence voltage is = 605.5265 /_ 19.11 Volts |