diff options
Diffstat (limited to '1985/CH11')
-rwxr-xr-x | 1985/CH11/EX11.1/Chapter11_Example1.sce | 14 | ||||
-rwxr-xr-x | 1985/CH11/EX11.2/Chapter11_Example2.sce | 15 | ||||
-rwxr-xr-x | 1985/CH11/EX11.3/Chapter11_Example3.sce | 17 | ||||
-rwxr-xr-x | 1985/CH11/EX11.4/Chapter11_Example4.sce | 18 | ||||
-rwxr-xr-x | 1985/CH11/EX11.5/Chapter11_Example5.sce | 12 | ||||
-rwxr-xr-x | 1985/CH11/EX11.6/Chapter11_Example6.sce | 14 | ||||
-rwxr-xr-x | 1985/CH11/EX11.7/Chapter11_Example7.sce | 16 |
7 files changed, 106 insertions, 0 deletions
diff --git a/1985/CH11/EX11.1/Chapter11_Example1.sce b/1985/CH11/EX11.1/Chapter11_Example1.sce new file mode 100755 index 000000000..16909c80e --- /dev/null +++ b/1985/CH11/EX11.1/Chapter11_Example1.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+h=6.625*10^-34//Plancks constant in J.s
+e=(1.6*10^-19)//Charge of the electron in C
+c=(3*10^8)//Velocity of light in m/s
+V=(10*10^3)//Potential difference applied in V
+
+//Calculations
+lmin=(12400/V)//The wavelength of X-rays emitted in angstroms
+v=(c/(lmin*10^-10))/10^18//Frequency of the X-ray beam emitted in Hz*10^18
+
+//Output
+printf('The shortest wavelength of X-rays produced by an X-ray tube is %3.2f angstroms \n The frequency of the X-ray beam emitted is %3.3f*10^18 Hz',lmin,v)
diff --git a/1985/CH11/EX11.2/Chapter11_Example2.sce b/1985/CH11/EX11.2/Chapter11_Example2.sce new file mode 100755 index 000000000..fe6640f99 --- /dev/null +++ b/1985/CH11/EX11.2/Chapter11_Example2.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+V=10*1000//Potential difference applied in V
+I=2*10^-3//Current in A
+e=(1.6*10^-19)//Charge of the electron in C
+m=9.1*10^-31//Mass of the electron in kg
+
+//Calculations
+n=(I/e)/10^16//Number of electrons striking the target per second *10^16
+v=sqrt((2*e*V)/m)/10^7//Velocity of the electron in m/s*10^7
+lmin=12400/V//Wavelength of the X-rays in angstroms
+
+//Output
+printf('Number of electrons striking the target per second is %3.2f*10^16 \n Velocity of the electron is %3.2f*10^7 m/s \n Wavelength of the X-rays is %3.2f angstroms',n,v,lmin)
diff --git a/1985/CH11/EX11.3/Chapter11_Example3.sce b/1985/CH11/EX11.3/Chapter11_Example3.sce new file mode 100755 index 000000000..7812a093c --- /dev/null +++ b/1985/CH11/EX11.3/Chapter11_Example3.sce @@ -0,0 +1,17 @@ +
+clc
+clear
+//Input data
+d=5.6534*10^-10//Interplanar spacing in m
+q1=13.666//Glacing angle in degrees
+n1=1//Order of diffraction
+n2=2//Order of diffraction
+
+//Calculations
+l=((2*d*sind(q1))/n1)/10^-10//Wavelength in m*10^-10
+q2=asind((n2*l*10^-10)/(2*d))//Angle for the second order in degrees
+qzx=(q2-(int(q2)))*60//For output
+qzy=(qzx-(int(qzx)))*60//For output
+
+//Output
+printf('(a) The wavelength of the X-rays is %3.3f*10^-10 m \n (b) The angle for the second order Bragg reflection is %3.0f degrees %3.0f minutes %3.2f seconds',l,q2,qzx,qzy)
diff --git a/1985/CH11/EX11.4/Chapter11_Example4.sce b/1985/CH11/EX11.4/Chapter11_Example4.sce new file mode 100755 index 000000000..23477624e --- /dev/null +++ b/1985/CH11/EX11.4/Chapter11_Example4.sce @@ -0,0 +1,18 @@ +
+clc
+clear
+//Input data
+V=24800//Potential difference applied in V
+n=1//Order of diffraction
+l=1.54*10^-10//Wavelength of X-ray beam in m
+q=15.8//Glancing angle in degrees
+
+//Calculations
+d=((n*l)/(2*sind(q)))/10^-10//Interplanar spacing in m
+lmin=12400/V//Minimum wavelength of X-rays emitted in angstroms
+q=asind((n*lmin*10^-10)/(2*d*10^-10))//Glancing angle for minimum wavelength in degrees
+qx=(q-int(q))*60//For output
+qy=(qx-int(qx))*60//For output
+
+//Output
+printf('The grating spaing for NaCl crystal is %3.3f angstroms \n Glancing angle for minimum wavelength is %3.0f degrees %3.0f minutes %3.0f seconds',d,q,qx,qy)
diff --git a/1985/CH11/EX11.5/Chapter11_Example5.sce b/1985/CH11/EX11.5/Chapter11_Example5.sce new file mode 100755 index 000000000..3aa00f638 --- /dev/null +++ b/1985/CH11/EX11.5/Chapter11_Example5.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+l=0.7078//Wavelength of X-rays in m
+ZMo=42//Atomic number of molybdenum
+ZCd=48//Atomic number of cadmium
+
+//Calculations
+lCd=(l)*((ZMo-1)^2/(ZCd-1)^2)//Wavelength of Cadmium radiation in angstroms
+
+//Output
+printf('The wavelength of cadmium radiation is %3.4f angstroms',lCd)
diff --git a/1985/CH11/EX11.6/Chapter11_Example6.sce b/1985/CH11/EX11.6/Chapter11_Example6.sce new file mode 100755 index 000000000..45b8fa949 --- /dev/null +++ b/1985/CH11/EX11.6/Chapter11_Example6.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+q=60//Angle of scattering in degrees
+l=1.24//Wavelength of X-rays in angstroms
+m=9.1*10^-31//Mass of the electron in kg
+h=6.625*10^-34//Plancks constant in J.s
+c=(3*10^8)//Velocity of light in m/s
+
+//Calculations
+dl=((h*(1-cosd(q)))/(m*c))/10^-10//The Compton angle in degrees
+
+//Output
+printf('The Compton shift is %3.3f angstroms',dl)
diff --git a/1985/CH11/EX11.7/Chapter11_Example7.sce b/1985/CH11/EX11.7/Chapter11_Example7.sce new file mode 100755 index 000000000..87b96217b --- /dev/null +++ b/1985/CH11/EX11.7/Chapter11_Example7.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+l=0.112*10^-9//Wavelength of X-rays in m
+q=90//Angle of scattering in degrees
+m=9.1*10^-31//Mass of the electron in kg
+h=6.625*10^-34//Plancks constant in J.s
+c=(3*10^8)//Velocity of light in m/s
+
+//Calculations
+dl=((h*(1-cosd(q)))/(m*c))/10^-10//The Compton angle in degrees
+l1=(dl+(l/10^-10))//Wavelength of the X-rays scattered at an agle of 90 degrees in angstroms
+dE=((h*c*((1/l)-(1/(l1*10^-10)))))/10^-17//The energy of the recoiling electron in J*10^-17
+
+//Output
+printf('(a) Wavelength of the X-rays scattered at an agle of 90 degrees with respect to the original direction is %3.3f angstroms \n (b) The energy of the scattering electron after the collision is %3.2f*10^-17 J',l1,dE)
|