diff options
Diffstat (limited to '1970/CH15')
-rwxr-xr-x | 1970/CH15/EX15.1/CH15Exa1.sce | 20 | ||||
-rwxr-xr-x | 1970/CH15/EX15.2/CH15Exa2.sce | 21 | ||||
-rwxr-xr-x | 1970/CH15/EX15.3/CH15Exa3.sce | 25 | ||||
-rwxr-xr-x | 1970/CH15/EX15.4/CH15Exa4.sce | 11 | ||||
-rwxr-xr-x | 1970/CH15/EX15.5/CH15Exa5.sce | 21 | ||||
-rwxr-xr-x | 1970/CH15/EX15.6/CH15Exa6.sce | 14 | ||||
-rwxr-xr-x | 1970/CH15/EX15.7/CH15Exa7.sce | 10 | ||||
-rwxr-xr-x | 1970/CH15/EX15.8/CH15Exa8.sce | 17 |
8 files changed, 139 insertions, 0 deletions
diff --git a/1970/CH15/EX15.1/CH15Exa1.sce b/1970/CH15/EX15.1/CH15Exa1.sce new file mode 100755 index 000000000..0a58da351 --- /dev/null +++ b/1970/CH15/EX15.1/CH15Exa1.sce @@ -0,0 +1,20 @@ +// Scilab code Exa15.1 : : Page-652 (2011) +clc; clear; +N_0_235 = 1; // Number of uranium atom +N_0_c = 10^5; // Number of graphite atoms per uranium atom +sigma_a_235 = 698; // Absorption cross section for uranium, barns +sigma_a_c = 0.003; // Absorption cross section for graphite, barns +f = N_0_235*sigma_a_235/(N_0_235*sigma_a_235+N_0_c*sigma_a_c ); // Thermal utilization factor +eta = 2.08; // Number of fast fission neutron produced +k_inf = eta*f; // Multiplication factor +L_m = 0.54; // Material length, metre +L_sqr = ((L_m)^2*(1-f)); // diffusion length, metre +tau = 0.0364; // Age of the neutron +B_sqr = 3.27; // Geometrical buckling +k_eff = round (k_inf*exp(-tau*B_sqr)/(1+L_sqr*B_sqr)); // Effective multiplication factor +N_lf = k_eff/k_inf; // Non leakage factor +lf = (1-N_lf)*100; // Leakage factor, percent +printf("\n Total leakage factor = %4.1f percent",lf) + +// Result +// Total leakage factor = 31.3 percent
\ No newline at end of file diff --git a/1970/CH15/EX15.2/CH15Exa2.sce b/1970/CH15/EX15.2/CH15Exa2.sce new file mode 100755 index 000000000..1c54ee261 --- /dev/null +++ b/1970/CH15/EX15.2/CH15Exa2.sce @@ -0,0 +1,21 @@ +// Scilab code Exa15.2 : : Page-652 (2011) +clc; clear; +N_m = 50; // Number of molecules of heavy water per uranium molecule +N_u = 1; // Number of uranium molecules +sigma_a_u = 7.68; // Absorption cross section for uranium, barns +sigma_s_u = 8.3; // Scattered cross section for uranium, barns +sigma_a_D = 0.00092; // Absorption cross section for heavy water, barns +sigma_s_D = 10.6; // Scattered cross section for uranium, barns +f = N_u*sigma_a_u/(N_u*sigma_a_u+N_m*sigma_a_D ); // Thermal utilization factor +zeta = 0.570; // Average number of collisions +N_0 = N_u*139/140; // Number of U-238 atoms per unit volume +sigma_s = N_m/N_0*sigma_s_D; // Scattered cross section, barns +sigma_a_eff = 3.85*(sigma_s/N_0)^0.415; // Effective absorption cross section, barns +p = exp(-sigma_a_eff/sigma_s); // Resonance escape probablity +eps = 1; // Fast fission factor +eta = 1.34; // Number of fast fission neutron produced +k_inf = eps*eta*p*f; // Effective multiplication factor +printf("\nNeutron multiplication factor = %4.1f ", k_inf); + +// Result +// Neutron multiplication factor = 1.2
\ No newline at end of file diff --git a/1970/CH15/EX15.3/CH15Exa3.sce b/1970/CH15/EX15.3/CH15Exa3.sce new file mode 100755 index 000000000..05cc3158d --- /dev/null +++ b/1970/CH15/EX15.3/CH15Exa3.sce @@ -0,0 +1,25 @@ +// Scilab code Exa15.3 : : Page-652 (2011) +clc; clear; +// For graphite +sigma_a_g = 0.0032; // Absorption cross section for graphite, barns +sigma_s_g = 4.8; // Scattered cross section for graphite, barns +zeta = 0.158; // Average number of collisions +N_m = 50; // Number of molecules of graphite per uranium molecule +// For uranium +sigma_f = 590; // Fissioning cross section, barns +sigma_a_u = 698; // Absorption cross section for U-235, barns +sigma_a_238 = 2.75; // Absorption cross section for U-238, barns +v = 2.46; // Number of fast neutrons emitted +N_u = 1 // Number of uranium atoms +f = N_u*sigma_a_u/(N_u*sigma_a_u+N_m*sigma_a_g ); // Thermal utilization factor +N_0 = N_u*(75/76); // Number of U-238 atoms per unit volume +sigma_s = N_m*76/75*sigma_s_g/N_u; // Scattered cross section, barns +sigma_eff = 3.85*(sigma_s/N_0)^0.415; // Effective cross section, barns +p = exp(-sigma_eff/sigma_s); // Resonance escape probability, barns +eps = 1; // Fast fission factor +eta = 1.34; // Number of fast fission neutron produced +k_inf = eps*eta*p*f; // Multiplication factor +printf("\nThe required multiplication factor = %3.1f ", k_inf); + +// Result +// The required multiplication factor = 1.1
\ No newline at end of file diff --git a/1970/CH15/EX15.4/CH15Exa4.sce b/1970/CH15/EX15.4/CH15Exa4.sce new file mode 100755 index 000000000..0ccdd9256 --- /dev/null +++ b/1970/CH15/EX15.4/CH15Exa4.sce @@ -0,0 +1,11 @@ +// Scilab code Exa15.4 : : Page-653 (2011) +clc; clear; +eta = 2.07; // Number of fast fission neutron produced +x = 1/(eta-1); +sigma_a_u = 687; // Absorption cross section for uranium, barns +sigma_a_g = 0.0045; // Absorption cross section for graphite, barns +N_ratio = x*sigma_a_g/sigma_a_u; // Ratio of number of uranium atoms to graphite atoms +printf("\nThe ratio of number of uranium atoms to graphite atoms = %4.2e ", N_ratio); + +// Result +// The ratio of number of uranium atoms to graphite atoms = 6.12e-006
\ No newline at end of file diff --git a/1970/CH15/EX15.5/CH15Exa5.sce b/1970/CH15/EX15.5/CH15Exa5.sce new file mode 100755 index 000000000..498dc48a2 --- /dev/null +++ b/1970/CH15/EX15.5/CH15Exa5.sce @@ -0,0 +1,21 @@ +// Scilab code Exa15.5 : : Page-653 (2011) +clc; clear; +f = 0.754; // Thermal utilization factor +sigma_s_o = 4.2; // Scattered cross section for oxygen, barns +sigma_s_H = 20; // Scattered cross section for hydrogen, barns +N_O = 879.25; // Number of oxygen atoms +N_238 = 14.19; // Number of uranium atoms +N_H = 1573; // Number of hydrogen atoms +sigma_s = N_O/N_238*sigma_s_o+N_H/N_238*sigma_s_H; // Scattered cross section, barns +N_0 = 14.19; // Number of U-238 per unit volume +zeta_o = 0.120; // Number of collision for oxygen +zeta_H = 1; // Number of collision for hydrogen +sigma_eff = (N_0/(zeta_o*sigma_s_o*N_O+zeta_H*sigma_s_H*N_H )); // Effective cross section, barns +p = exp(-sigma_eff/sigma_s); // Resonance escape probablity +eta = 2.08; // Number of fission neutron produced. +eps = 1; // Fission factor +K_inf = eps*eta*p*f; // Multiplication factor +printf("\nThe multiplication factor for LOPO reactor = %3.1f ", K_inf); + +// Result +// The multiplication factor for LOPO reactor = 1.6
\ No newline at end of file diff --git a/1970/CH15/EX15.6/CH15Exa6.sce b/1970/CH15/EX15.6/CH15Exa6.sce new file mode 100755 index 000000000..f35ad6ff0 --- /dev/null +++ b/1970/CH15/EX15.6/CH15Exa6.sce @@ -0,0 +1,14 @@ +// Scilab code Exa15.6 : : Page-654 (2011) +clc; clear; +r = 35; // Radius of the reactor, centi metre +B_sqr = (%pi/r)^2; // Geometrical buckling, per square centi metre +D = 0.220; // Diffusion coefficient, centi metre +sigma_a_f = 0.057; // Rate of absorption of thermal neutrons +v = 2.5; // Number of fast neutrons emitted +tau = 50; // Age of the neutron +sigma_f = 0.048; // Rate of fission +sigma_a_c = -1/(1+tau*B_sqr)*(-v*sigma_f+sigma_a_f+B_sqr*D+tau*B_sqr*sigma_a_f); // Controlled cross section +printf("\nThe required controlled cross section = %6.4f ", sigma_a_c); + +// Result +// The required controlled cross section = 0.0273
\ No newline at end of file diff --git a/1970/CH15/EX15.7/CH15Exa7.sce b/1970/CH15/EX15.7/CH15Exa7.sce new file mode 100755 index 000000000..2c1946b8e --- /dev/null +++ b/1970/CH15/EX15.7/CH15Exa7.sce @@ -0,0 +1,10 @@ +// Scilab code Exa15.7 : : Page-655 (2011) +clc; clear; +B_sqr = 65; // Geometrical buckling +a = sqrt(3*%pi^2/B_sqr)*100; // Side of the cubical reactor, centi metre +R = round(%pi/sqrt(B_sqr)*100); // Radius of the cubical reactor,centi metre +printf("\nThe side of the cubical reactor = %4.1f cm\nThe critical radius of the reactor = %d cm", a, R); + +// Result +// The side of the cubical reactor = 67.5 cm +// The critical radius of the reactor = 39 cm
\ No newline at end of file diff --git a/1970/CH15/EX15.8/CH15Exa8.sce b/1970/CH15/EX15.8/CH15Exa8.sce new file mode 100755 index 000000000..697254084 --- /dev/null +++ b/1970/CH15/EX15.8/CH15Exa8.sce @@ -0,0 +1,17 @@ +// Scilab code Exa15.8 : : Page-655 (2011) +clc; clear; +sigma_a_u = 698; // Absorption cross section for uranium, barns +sigma_a_M = 0.00092; // Absorption cross section for heavy water, barns +N_m = 10^5; // Number of atoms of heavy water +N_u = 1; // Number of atoms of uranium +f = sigma_a_u/(sigma_a_u+sigma_a_M*N_m/N_u); // Thermal utilization factor +eta = 2.08; // Number of fast fission neutron produced +k_inf = eta*f; // Multiplication factor +L_m_sqr = 1.70; // Material length, metre +L_sqr = L_m_sqr*(1-f); // Diffusion length, metre +B_sqr = 1.819/0.30381*exp(-1/12)-1/0.3038; // Geometrical buckling, per square metre +V_c = 120/(B_sqr*sqrt(B_sqr)); // Volume of the reactor, cubic metre +printf("\nThe critical volume of the reactor = %4.1f cubic metre", V_c); + +// Result +// The critical volume of the reactor = 36.4 cubic metre
\ No newline at end of file |