diff options
Diffstat (limited to '1964/CH2')
-rwxr-xr-x | 1964/CH2/EX2.1/ex2_1.sce | 22 | ||||
-rwxr-xr-x | 1964/CH2/EX2.10/ex2_10.sce | 20 | ||||
-rwxr-xr-x | 1964/CH2/EX2.2/ex2_2.sce | 21 | ||||
-rwxr-xr-x | 1964/CH2/EX2.3/ex2_3.sce | 23 | ||||
-rwxr-xr-x | 1964/CH2/EX2.4/ex2_4.sce | 21 | ||||
-rwxr-xr-x | 1964/CH2/EX2.5/ex2_5.sce | 33 | ||||
-rwxr-xr-x | 1964/CH2/EX2.6/ex2_6.sce | 36 | ||||
-rwxr-xr-x | 1964/CH2/EX2.7/ex2_7.sce | 17 | ||||
-rwxr-xr-x | 1964/CH2/EX2.8/ex2_8.sce | 17 | ||||
-rwxr-xr-x | 1964/CH2/EX2.9/ex2_9.sce | 19 |
10 files changed, 229 insertions, 0 deletions
diff --git a/1964/CH2/EX2.1/ex2_1.sce b/1964/CH2/EX2.1/ex2_1.sce new file mode 100755 index 000000000..607361c8f --- /dev/null +++ b/1964/CH2/EX2.1/ex2_1.sce @@ -0,0 +1,22 @@ +//Chapter-2, Example 2.1, Page 89
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+N=2000;//no of turns
+I=10;//current in A
+Rm=25;//mean radius in cm
+d=6;//diameter of each turn in cm
+//CALCULATIONS
+MMF=N*I;//magneto motive force in A
+l=2*%pi*(Rm/100);//circumference of coli in m
+u=(4*%pi*10^-7);//permeability (U=Ur*U0)
+a=(%pi*d*d*10^-4)/4;
+reluctance=(l/(a*u));//reluctance in At/Wb
+flux=(MMF)/(reluctance);//flux in Wb
+fluxdensity=(flux/a);//flux density in Wb/m^2 or tesla
+//OUTPUT
+mprintf("Thus MMF,flux,flux density are %d A, %g Wb ,%g Wb/m^2 or Tesla respectively ",MMF,flux,fluxdensity);
+ //=================================END OF PROGRAM==============================
+
+
diff --git a/1964/CH2/EX2.10/ex2_10.sce b/1964/CH2/EX2.10/ex2_10.sce new file mode 100755 index 000000000..6d0104f41 --- /dev/null +++ b/1964/CH2/EX2.10/ex2_10.sce @@ -0,0 +1,20 @@ +//Chapter-2, Example 2.10, Page 96
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+li=0.5;//length of iron ring mean length in m
+N=220;//no of turns
+I=1.2;//current in A
+lg=1.2*10^-3;//length of airgap in m
+ur=350;//relative permeability of iron
+u0=4*%pi*10^-7;//permeability in free space
+//CALCULATIONS
+MMF_produced=N*I;
+Si=li/(u0*ur);//reluctance of iron path
+Sg=lg/(u0);//reluctance of air gap
+S=Si+Sg;//total reluctance
+Flux_density=(MMF_produced)/(S);
+//OUTPUT
+mprintf("Thus fluxdensity is %1.3f Wb/m^2",Flux_density);
+ //=================================END OF PROGRAM==============================
diff --git a/1964/CH2/EX2.2/ex2_2.sce b/1964/CH2/EX2.2/ex2_2.sce new file mode 100755 index 000000000..403794b88 --- /dev/null +++ b/1964/CH2/EX2.2/ex2_2.sce @@ -0,0 +1,21 @@ +//Chapter-2, Example 2.2, Page 90
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+phi=5*10^-2;//flux in wb
+a=0.2;//area of cross-section in m^2
+lg=1.2*10^-2;//length of air gap in m
+ur=1;//permeability
+u=ur*4*%pi*10^-7;//permeability
+//CALCULATIONS
+B=(phi/a);//flux density in wb/sq.m
+H=(B/(4*%pi*10^-7*ur));//magnetic flux density in A/m
+S=lg/(a*u);//reluctance of air gap in A/wb
+permeance=1/S;//permenace in A/wb
+mmf_in_airgap=phi*S;//mmf in A
+//OUTPUT
+mprintf("Thus B,H,S,permeance,MMF in air gap are %1.2f Wb/sq.m, %g A/m ,%f A/wb ,%g Wb/A ,%d A respectively ",B,H,S,permeance,mmf_in_airgap);
+ //=================================END OF PROGRAM==============================
+
+
diff --git a/1964/CH2/EX2.3/ex2_3.sce b/1964/CH2/EX2.3/ex2_3.sce new file mode 100755 index 000000000..a18a513c7 --- /dev/null +++ b/1964/CH2/EX2.3/ex2_3.sce @@ -0,0 +1,23 @@ +//Chapter-2, Example 2.3, Page 90
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+phi=0.1*10^-3;//flux in wb
+a=1.7*10^-4;//area of cross-section in m^2
+lg=0.5*10^-3;//length of air gap in m
+Rm=15/2;//radius of ring in cm
+u0=4*%pi*10^-7;//permeability in free space in henry/m
+N=1500;//no of turns of ring
+//CALCULATIONS
+B=(phi/a);//flux density in wb/sq.m
+H=(B/(4*%pi*10^-7));//magnetic flux density in A/m
+ampere_turns_provided_fo=H*lg;
+total_ampere_turns_provi=N*1;
+Available_for_iron_path=N-(H*lg);
+length_of_iron_path=(2*Rm*%pi*10^-2)-(lg);//length of iron path in m
+H_for_iron_path=((N-(H*lg)))/(length_of_iron_path);
+ur=(B/(u0*H_for_iron_path));//relative permeability of iron
+//OUTPUT
+mprintf("Thus relative permeability of iron is %d",ur);
+ //=================================END OF PROGRAM==============================
diff --git a/1964/CH2/EX2.4/ex2_4.sce b/1964/CH2/EX2.4/ex2_4.sce new file mode 100755 index 000000000..da142973f --- /dev/null +++ b/1964/CH2/EX2.4/ex2_4.sce @@ -0,0 +1,21 @@ +//Chapter-2, Example 2.4, Page 91
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+li=0.5;//iron path length in m
+lg=10^-3;//length of air gap in m
+phi=0.9*10^-3;//flux in wb
+a=6.66*10^-4;//area of cross-section of iron in m^2
+N=400;//no of turns
+//CALCULATIONS
+B=(phi/a);//flux density in wb/sq.m
+Hg=(B/(4*%pi*10^-7));//magnetic flux density in A/m
+AT_required=Hg*lg;//AT required for air path
+Hi=1000;//magnetic flux density in A/m
+AT_required_for_iron_pat=Hi*li;
+total_AT_required=(Hg*lg)+(Hi*li);
+I=((Hg*lg)+(Hi*li))/(N);
+//OUTPUT
+mprintf("Thus exciting current required is %1.2f A",I);
+ //=================================END OF PROGRAM==============================
diff --git a/1964/CH2/EX2.5/ex2_5.sce b/1964/CH2/EX2.5/ex2_5.sce new file mode 100755 index 000000000..755889f78 --- /dev/null +++ b/1964/CH2/EX2.5/ex2_5.sce @@ -0,0 +1,33 @@ +//Chapter-2, Example 2.5, Page 92
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+r=0.01;//radius in m
+lg=10^-3;//length of air gap in m
+Rm=(30/2)*10^-2;//mean radius in m
+ur=800;//relative permeability of iron
+ur2=1;//relative permeability of air gap
+N=250;//no of turns
+phi=20000*10^-8;//flux in Wb
+u0=4*%pi*10^-7;//permeability in free space
+a=%pi*(r)^2;//area of cross-section in m
+leakage_factor=1.1
+//CALCULATIONS
+Reluctance_of_air_gap=(lg/(u0*ur2*a));//reluctance of air gap in A/wb
+li=(%pi*(2*r)-(lg));//length of iron path in m
+Reluctance_of_iron_path=((%pi*0.3)-(lg))/(4*%pi*10^-7*800*a);//in A/wb
+total_reluctance=Reluctance_of_air_gap+Reluctance_of_iron_path;//in A/wb
+MMF=phi*total_reluctance;//in Ampere turns
+current_required=(MMF)/(N);//in A
+//OUTPUT
+mprintf("Thus current required is %1.2f A \n",current_required);
+ //Including leakage
+ //CALCULATIONS
+ MMF_of_airgap=phi*Reluctance_of_air_gap;//in A/wb
+ Total_flux_in_ironpath=leakage_factor*phi;//in Wb
+ MMF_of_ironpath=Total_flux_in_ironpath*Reluctance_of_iron_path;//in A
+ Total_MMF=MMF_of_ironpath+MMF_of_airgap;//in A/wb
+ current_required2=Total_MMF/(N);//in A
+//OUTPUT
+mprintf("Thus current required is %1.3f A",current_required2);
diff --git a/1964/CH2/EX2.6/ex2_6.sce b/1964/CH2/EX2.6/ex2_6.sce new file mode 100755 index 000000000..96d6bbf10 --- /dev/null +++ b/1964/CH2/EX2.6/ex2_6.sce @@ -0,0 +1,36 @@ +//Chapter-2, Example 2.6, Page 93
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+l1=0.1;//length in m
+l2=0.18;//length in m
+l3=0.18;//length in m
+lg=1*10^-3;//airgap length in mm
+a1=6.25*10^-4;//area in m^2
+a2=3*10^-4;//area in m^2
+ur=800;//relative permeability of iron path
+ur2=1;//relative permeability in free space
+u0=4*%pi*10^-7
+N=600;
+phi=10^-4;//airgap flux in Wb
+//CALCULATIONS
+//for the airgap
+Bg=(phi/(a1));//fluxdensity in Tesla
+Hg=(Bg/(u0*ur2));//magnetising force in A/m
+MMF1=Hg*lg;//in A
+//for path I1
+B1=0.16;// flux density in tesla
+H1=(B1/(ur*u0));//magnetising force in A/m
+MMF2=H1*l1;//in A
+//since paths l2 and l3 are similar,the total flux divide equally between these two paths.Since these paths are in parallel,consider only one of them
+//for path l2
+flux=50*10^-6;//flux in wb
+B2=(flux/a2);//fluxdensity in tesla
+H2=(B2/(ur*u0));//magnetising force in A/m
+MMF3=H2*l2;//in A
+totalmmf=MMF1+MMF2+MMF3;//in A
+I=(totalmmf/N);//current required in A
+//OUTPUT
+mprintf("Thus current required is %1.3f A",I);
+ //=================================END OF PROGRAM==============================
diff --git a/1964/CH2/EX2.7/ex2_7.sce b/1964/CH2/EX2.7/ex2_7.sce new file mode 100755 index 000000000..cd942144b --- /dev/null +++ b/1964/CH2/EX2.7/ex2_7.sce @@ -0,0 +1,17 @@ +//Chapter-2, Example 2.7, Page 95
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+Dm=0.1//diameter in m
+a=10^-3;//area of cross-section im m^2
+N=150;//no of turns
+ur=800;//permeability of iron ring
+B=0.1;//in Wb/m^2
+u0=4*%pi*10^-7;//permeability of free space
+//CALCULATIONS
+S=(%pi*Dm)/(a*ur*u0);//reluctance
+I=(B*a*S)/(N);//current in A
+//OUTPUT
+mprintf("Thus current is %f A",I);
+ //=================================END OF PROGRAM==============================
diff --git a/1964/CH2/EX2.8/ex2_8.sce b/1964/CH2/EX2.8/ex2_8.sce new file mode 100755 index 000000000..13479bf83 --- /dev/null +++ b/1964/CH2/EX2.8/ex2_8.sce @@ -0,0 +1,17 @@ +//Chapter-2, Example 2.8, Page 95
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+l=0.3;//length in m
+d=1.5*10^-2;//diameter in m
+N=900;//no of turns
+ur=1;//relative permeability in free space
+u0=4*%pi*10^-7;//permeability in free space
+I=5;//current in A
+//CALCULATIONS
+a=(%pi*(d)^2/4);//in m^2
+S=(l)/(a*ur*u0);//reluctance
+//OUTPUT
+mprintf("Thus reluctance is %f A/wb",S);
+ //=================================END OF PROGRAM==============================
diff --git a/1964/CH2/EX2.9/ex2_9.sce b/1964/CH2/EX2.9/ex2_9.sce new file mode 100755 index 000000000..e8b79baec --- /dev/null +++ b/1964/CH2/EX2.9/ex2_9.sce @@ -0,0 +1,19 @@ +//Chapter-2, Example 2.9, Page 95
+//=============================================================================
+clc;
+clear;
+//INPUT DATA
+lg=10^-3;//length of air gap in m
+B=0.9;//flux density in wb/m^2
+li=0.3;//length of ironpath in m
+Hi=800;//magnetic flux density in AT/m
+u0=4*%pi*10^-7;//permeabilty in free space
+//CALCULATIONS
+//for iron path
+MMF_required1=Hi*li;//magnetic motive force in AT
+//for air gap
+MMF_required2=(B/u0)*lg;//magnetic motive force in AT
+Totalmmf=MMF_required1+MMF_required2
+//OUTPUT
+mprintf("Thus total MMF required is %d AT",Totalmmf);
+ //=================================END OF PROGRAM==============================
|