summaryrefslogtreecommitdiff
path: root/1958
diff options
context:
space:
mode:
Diffstat (limited to '1958')
-rwxr-xr-x1958/CH1/EX1.1/Chapter1_example1.sce15
-rwxr-xr-x1958/CH1/EX1.2/Chapter1_example2.sce12
-rwxr-xr-x1958/CH1/EX1.3/Chapter1_example3.sce16
-rwxr-xr-x1958/CH1/EX1.4/Chapter1_example4.sce11
-rwxr-xr-x1958/CH1/EX1.5/Chapter1_example5.sce13
-rwxr-xr-x1958/CH1/EX1.6/Chapter1_example6.sce12
-rwxr-xr-x1958/CH1/EX1.7/Chapter1_example7.sce12
-rwxr-xr-x1958/CH1/EX1.8/Chapter1_example8.sce13
-rwxr-xr-x1958/CH1/EX1.9/Chapter1_example9.sce13
-rwxr-xr-x1958/CH1/EX1.e.1/Chapter1_ex1.sce18
-rwxr-xr-x1958/CH1/EX1.e.5/Chapter1_ex5.sce14
-rwxr-xr-x1958/CH1/EX1.e.6/Chapter1_ex6.sce12
-rwxr-xr-x1958/CH1/EX1.e.8/Chapter1_ex8.sce12
-rwxr-xr-x1958/CH10/EX10.1/Chapter10_example1.sce12
-rwxr-xr-x1958/CH10/EX10.2/Chapter10_example2.sce12
-rwxr-xr-x1958/CH10/EX10.3/Chapter10_example3.sce11
-rwxr-xr-x1958/CH10/EX10.4/Chapter10_example4.sce10
-rwxr-xr-x1958/CH10/EX10.5/Chapter10_example5.sce13
-rwxr-xr-x1958/CH11/EX11.1/Chapter11_example1.sce12
-rwxr-xr-x1958/CH11/EX11.2/Chapter11_example2.sce11
-rwxr-xr-x1958/CH12/EX12.1/Chapter12_example12_1.sce18
-rwxr-xr-x1958/CH12/EX12.2/Chapter12_example12_2.sce12
-rwxr-xr-x1958/CH12/EX12.3/Chapter12_example12_3.sce12
-rwxr-xr-x1958/CH12/EX12.4/Chapter12_example12_4.sce14
-rwxr-xr-x1958/CH12/EX12.5/Chapter12_example12_5.sce14
-rwxr-xr-x1958/CH12/EX12.6/Chapter12_example12_6.sce14
-rwxr-xr-x1958/CH12/EX12.e.1/Chapter12_example1.sce11
-rwxr-xr-x1958/CH12/EX12.e.2/Chapter12_example2.sce17
-rwxr-xr-x1958/CH12/EX12.e.3/Chapter12_example3.sce13
-rwxr-xr-x1958/CH12/EX12.e.4/Chapter12_example4.sce12
-rwxr-xr-x1958/CH12/EX12.e.5/Chapter12_example5.sce12
-rwxr-xr-x1958/CH12/EX12.e.6/Chapter12_example6.sce12
-rwxr-xr-x1958/CH12/EX12.e.7/Chapter12_example7.sce12
-rwxr-xr-x1958/CH13/EX13.1/Chapter13_example1.sce13
-rwxr-xr-x1958/CH13/EX13.2/Chapter13_example2.sce14
-rwxr-xr-x1958/CH13/EX13.3/Chapter13_example3.sce13
-rwxr-xr-x1958/CH13/EX13.4/Chapter13_example4.sce15
-rwxr-xr-x1958/CH13/EX13.5/Chapter13_example5.sce15
-rwxr-xr-x1958/CH13/EX13.6/Chapter13_example6.sce21
-rwxr-xr-x1958/CH13/EX13.7/Chapter13_example7.sce15
-rwxr-xr-x1958/CH13/EX13.8/Chapter13_example8.sce13
-rwxr-xr-x1958/CH15/EX15.1/Chapter15_example1.sce13
-rwxr-xr-x1958/CH15/EX15.2/Chapter15_example2.sce15
-rwxr-xr-x1958/CH15/EX15.3/Chapter15_example3.sce13
-rwxr-xr-x1958/CH15/EX15.4/Chapter15_example4.sce13
-rwxr-xr-x1958/CH15/EX15.5/Chapter15_example5.sce14
-rwxr-xr-x1958/CH16/EX16.1/Chapter16_example1.sce16
-rwxr-xr-x1958/CH16/EX16.2/Chapter16_example2.sce14
-rwxr-xr-x1958/CH17/EX17.1/Chapter17_example1.sce16
-rwxr-xr-x1958/CH17/EX17.2/Chapter17_example2.sce14
-rwxr-xr-x1958/CH17/EX17.3/Chapter17_example3.sce13
-rwxr-xr-x1958/CH17/EX17.4/Chapter17_example4.sce13
-rwxr-xr-x1958/CH17/EX17.5/Chapter17_example5.sce16
-rwxr-xr-x1958/CH2/EX2.1/Chapter2_example1.sce12
-rwxr-xr-x1958/CH2/EX2.2/Chapter2_example2.sce14
-rwxr-xr-x1958/CH2/EX2.3/Chapter2_example3.sce22
-rwxr-xr-x1958/CH2/EX2.4/Chapter2_example4.sce11
-rwxr-xr-x1958/CH2/EX2.5/Chapter2_example5.sce11
-rwxr-xr-x1958/CH2/EX2.6/Chapter2_example6.sce11
-rwxr-xr-x1958/CH2/EX2.7/Chapter2_example7.sce13
-rwxr-xr-x1958/CH2/EX2.8/Chapter2_example8.sce15
-rwxr-xr-x1958/CH3/EX3.1/Chapter3_example1.sce18
-rwxr-xr-x1958/CH3/EX3.2/Chapter3_example2.sce13
-rwxr-xr-x1958/CH3/EX3.3/Chapter3_example3.sce13
-rwxr-xr-x1958/CH3/EX3.4/Chapter3_example4.sce12
-rwxr-xr-x1958/CH3/EX3.5/Chapter3_example5.sce13
-rwxr-xr-x1958/CH4/EX4.1/Chapter4_example1.sce13
-rwxr-xr-x1958/CH4/EX4.2/Chapter4_example2.sce12
-rwxr-xr-x1958/CH4/EX4.3/Chapter4_example3.sce11
-rwxr-xr-x1958/CH4/EX4.4/Chapter4_example4.sce11
-rwxr-xr-x1958/CH4/EX4.5/Chapter4_example5.sce15
-rwxr-xr-x1958/CH5/EX5.1/Chapter5_example1.sce16
-rwxr-xr-x1958/CH5/EX5.2/Chapter5_example2.sce14
-rwxr-xr-x1958/CH5/EX5.3/Chapter5_example3.sce17
-rwxr-xr-x1958/CH5/EX5.4/Chapter5_example4.sce11
-rwxr-xr-x1958/CH5/EX5.5/Chapter5_example5.sce13
-rwxr-xr-x1958/CH5/EX5.6/Chapter5_example6.sce12
-rwxr-xr-x1958/CH5/EX5.7/Chapter5_example7.sce15
-rwxr-xr-x1958/CH5/EX5.8/Chapter5_example8.sce14
-rwxr-xr-x1958/CH6/EX6.1/Chapter6_example1.sce14
-rwxr-xr-x1958/CH6/EX6.2/Chapter6_example2.sce12
-rwxr-xr-x1958/CH6/EX6.3/Chapter6_example3.sce14
-rwxr-xr-x1958/CH6/EX6.4/Chapter6_example4.sce14
-rwxr-xr-x1958/CH6/EX6.5/Chapter6_example5.sce16
-rwxr-xr-x1958/CH7/EX7.1/Chapter7_example1.sce18
-rwxr-xr-x1958/CH7/EX7.2/Chapter7_example2.sce16
-rwxr-xr-x1958/CH7/EX7.3/Chapter7_example3.sce19
-rwxr-xr-x1958/CH7/EX7.4/Chapter7_example4.sce13
-rwxr-xr-x1958/CH9/EX9.1/Chapter9_example1.sce15
-rwxr-xr-x1958/CH9/EX9.2/Chapter9_example2.sce14
-rwxr-xr-x1958/CH9/EX9.3/Chapter9_example3.sce13
-rwxr-xr-x1958/CH9/EX9.4/Chapter9_example4.sce12
-rwxr-xr-x1958/CH9/EX9.5/Chapter9_example5.sce13
93 files changed, 1271 insertions, 0 deletions
diff --git a/1958/CH1/EX1.1/Chapter1_example1.sce b/1958/CH1/EX1.1/Chapter1_example1.sce
new file mode 100755
index 000000000..f67e08a7b
--- /dev/null
+++ b/1958/CH1/EX1.1/Chapter1_example1.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+d=180//Distance of satellite above the surface of earth in km
+t=90//Time taken to complete one revolution of the earth in minutes
+r=6400//Radius of the earth in kms
+
+//Calculations
+R=(r+d)*1000//Total distance in m
+T=t*60//Time in seconds
+v=(2*3.14*R)/T//Orbital speed in m/s
+a=(v^2/R)//Centripetal acceleration in m/s^2
+
+//Output
+printf('Orbital speed is %i m/s \n Centripetal acceleration is %3.1f m/s^2',v,a)
diff --git a/1958/CH1/EX1.2/Chapter1_example2.sce b/1958/CH1/EX1.2/Chapter1_example2.sce
new file mode 100755
index 000000000..51e345857
--- /dev/null
+++ b/1958/CH1/EX1.2/Chapter1_example2.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+m=0.05//Mass of the stone in kg
+r=0.4//Radius of the string in m
+
+//Calculations
+vh=sqrt(9.8*r)//Minimum speed when the stone is at the top of the circle in m/s
+vl=sqrt((2/m)*(((1/2)*m*vh^2)+(m*9.8*2*r)))//Minimum speed when the stone is at the bottom of the circle in m/s
+
+//Output
+printf('Minimum speed when the stone is at the top of the circle is %3.2f m/s \n Minimum speed when the stone is at the bottom of the circle is %3.2f m/s',vh,vl)
diff --git a/1958/CH1/EX1.3/Chapter1_example3.sce b/1958/CH1/EX1.3/Chapter1_example3.sce
new file mode 100755
index 000000000..7606661d7
--- /dev/null
+++ b/1958/CH1/EX1.3/Chapter1_example3.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//Input data
+m=0.2//Mass of the ball in kg
+r=1.5//Radius of vertical circle in m
+q=35//Angle made by the ball in degrees
+v=6//Velocity of the ball in m/s
+
+//Calculations
+T=(m*((v^2/r)+(9.8*cosd(q))))//Tension in the string in N
+at=9.8*sind(q)//Tangential acceleration in m/s^2
+ar=(v^2/r)//Radial acceleration in m/s^2
+a=sqrt(at^2+ar^2)//Acceleration in m/s^2
+
+//Output
+printf('Tension in the string is %3.1f N \n Tangential acceleration is %3.2f m/s^2 \n Radial acceleration is %i m/s^2',T,at,ar)
diff --git a/1958/CH1/EX1.4/Chapter1_example4.sce b/1958/CH1/EX1.4/Chapter1_example4.sce
new file mode 100755
index 000000000..22f8ea8c7
--- /dev/null
+++ b/1958/CH1/EX1.4/Chapter1_example4.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+//A small ball is released from height of 4r measured from the bottom of the loop, where r is the radius of the loop
+
+//Calculations
+ar=(6*9.8)//Radial acceleration in m/s^2
+at=(9.8*sind(90))//Tangential acceleration in m/s^2
+
+//Output
+printf('Radial acceleration is %3.1f m/s^2 \n Tangential acceleration is %3.1f m/s^2',ar,at)
diff --git a/1958/CH1/EX1.5/Chapter1_example5.sce b/1958/CH1/EX1.5/Chapter1_example5.sce
new file mode 100755
index 000000000..d0a9575c3
--- /dev/null
+++ b/1958/CH1/EX1.5/Chapter1_example5.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+l=0.95//Length of the strring in m
+m=0.15//Mass of the bob in kg
+r=0.25//Radius of the circle in m
+
+//Calculations
+h=sqrt(l^2-r^2)//Height of the pendulum in m
+t=2*3.14*sqrt(h/9.8)//Period of rotation in s
+
+//Output
+printf('The period of rotation is %3.4f s',t)
diff --git a/1958/CH1/EX1.6/Chapter1_example6.sce b/1958/CH1/EX1.6/Chapter1_example6.sce
new file mode 100755
index 000000000..a0488a552
--- /dev/null
+++ b/1958/CH1/EX1.6/Chapter1_example6.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+N=40//Minimum speed of rotor in rpm
+r=2.5//Radius of rotor in m
+
+//Calculations
+t=60/N//Time period in s
+u=(9.8*t^2)/(4*3.14^2*r)//Coefficient of limiting friction
+
+//Output
+printf('The coefficient of limiting friction between the object and the wall of the rotor is %3.4f',u)
diff --git a/1958/CH1/EX1.7/Chapter1_example7.sce b/1958/CH1/EX1.7/Chapter1_example7.sce
new file mode 100755
index 000000000..18a52e474
--- /dev/null
+++ b/1958/CH1/EX1.7/Chapter1_example7.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+a=30//Angle of inclination in degrees
+t=3//Time in s
+
+//Calculations
+a=(9.8*sind(a))//Acceleration in m/s^2
+v=(0+a*t)//Velocity in m/s
+
+//Output
+printf('Speed of the block after %i s is %3.1f m/s',t,v)
diff --git a/1958/CH1/EX1.8/Chapter1_example8.sce b/1958/CH1/EX1.8/Chapter1_example8.sce
new file mode 100755
index 000000000..6cdb13932
--- /dev/null
+++ b/1958/CH1/EX1.8/Chapter1_example8.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+m=10//Mass of the block in kg
+F1=40//Horizontal force to start moving in N
+F2=32//Horizontal force to move with constant velocity in N
+
+//Calculations
+u1=(F1/(m*9.8))//Coefficient of static friction
+u2=(F2/(m*9.8))//Coefficient of kinetic friction
+
+//Output
+printf('Coefficient of static friction is %3.3f \n Coefficient of kinetic friction is %3.3f',u1,u2)
diff --git a/1958/CH1/EX1.9/Chapter1_example9.sce b/1958/CH1/EX1.9/Chapter1_example9.sce
new file mode 100755
index 000000000..1efd1da11
--- /dev/null
+++ b/1958/CH1/EX1.9/Chapter1_example9.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+m=[3,12]//Masses of the blocks in kg
+q=50//Angle made by the string in degrees
+a=3//Acceleration of 12kg block in m/s^2
+
+//Calculations
+T=m(1)*(9.8+a)//Tension in the string in N
+u=(m(2)*(9.8*sind(q)-a)-T)/(m(2)*9.8*cosd(q))//Coefficient of kinetic friction
+
+//Output
+printf('Tension in the string is %3.1f N \n The coefficient of kinetic friction between %i kg block and the plane is %3.3f',T,m(2),u)
diff --git a/1958/CH1/EX1.e.1/Chapter1_ex1.sce b/1958/CH1/EX1.e.1/Chapter1_ex1.sce
new file mode 100755
index 000000000..170586337
--- /dev/null
+++ b/1958/CH1/EX1.e.1/Chapter1_ex1.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//Input data
+w=50//Weight in N
+a=[40,50]//Angles made by two cables in degrees
+
+//Calculations
+//Solving two equations obtained from fig. 1.10 on page no.10
+//-T1cos40+T2cos50=0
+//T1sin40+T2sin50=50
+A=[-cosd(a(1)) cosd(a(2))
+ sind(a(1)) sind(a(2))]//Coefficient matrix
+B=[0
+ w]//Constant matrix
+X=inv(A)*B//Variable matrix
+
+//Output
+printf('Tensions in all three cables are %3.2f N, %3.2f N, %i N',X(1),X(2),w)
diff --git a/1958/CH1/EX1.e.5/Chapter1_ex5.sce b/1958/CH1/EX1.e.5/Chapter1_ex5.sce
new file mode 100755
index 000000000..995c97eaf
--- /dev/null
+++ b/1958/CH1/EX1.e.5/Chapter1_ex5.sce
@@ -0,0 +1,14 @@
+clc
+clear
+m=100//Mass of block in kg
+F=500//Force in N
+q=30//Angle made with the horizontal in degrees
+u=0.4//Coefficient of sliding friction
+
+//Calculations
+R=m*9.8//Reaction force in N
+f=(u*R)//Frictional force in N
+a=(F*cosd(q)-f)/m//Acceleration of the block in m/s^2
+
+//Output
+printf('The acceleration of the block is %3.2f m/s^2',a)
diff --git a/1958/CH1/EX1.e.6/Chapter1_ex6.sce b/1958/CH1/EX1.e.6/Chapter1_ex6.sce
new file mode 100755
index 000000000..795e04ff9
--- /dev/null
+++ b/1958/CH1/EX1.e.6/Chapter1_ex6.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+m=[20,80]//Masses of blocks in kg
+F=1000//Force with which 20kg block is pulled in N
+
+//Calculations
+a=(F/(m(1)+m(2)))//Acceleration of the block in m/s^2
+T=F-(m(1)*a)//Tension in the string in N
+
+//Output
+printf('The acceleration produced is %i m/s^2 \n The tension in the string connecting the blocks is %i N',a,T)
diff --git a/1958/CH1/EX1.e.8/Chapter1_ex8.sce b/1958/CH1/EX1.e.8/Chapter1_ex8.sce
new file mode 100755
index 000000000..27936cc09
--- /dev/null
+++ b/1958/CH1/EX1.e.8/Chapter1_ex8.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+w=588//Weight of the person in N
+a=3//Acceleration in m/s^2
+
+//Calculations
+m=(w/9.8)//Mass of the person in kg
+P=(w+(m*a))//Weight of the person when the elevator is accelerated upwards in N
+
+//Output
+printf('Weight of the person when the elevator is accelerated upwards is %i N',P)
diff --git a/1958/CH10/EX10.1/Chapter10_example1.sce b/1958/CH10/EX10.1/Chapter10_example1.sce
new file mode 100755
index 000000000..734cfe72b
--- /dev/null
+++ b/1958/CH10/EX10.1/Chapter10_example1.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+D=1//Distance of screen from the slit in m
+w=6000//Wavelength in Angstrom
+w1=0.6//Slit width in mm
+
+//Calculations
+x=((2*D*w*10^-10)/(w1*10^-3))*1000//Width of central band in mm
+
+//Output
+printf('Width of central band is %i mm',x)
diff --git a/1958/CH10/EX10.2/Chapter10_example2.sce b/1958/CH10/EX10.2/Chapter10_example2.sce
new file mode 100755
index 000000000..45ac6fdfd
--- /dev/null
+++ b/1958/CH10/EX10.2/Chapter10_example2.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+d1=6000//Diffraction grating have number of lines per cm
+q=50//Diffracted second order spectral line observed in degrees
+n=2//Second order
+
+//Calculations
+w=(sind(q)/(d1*n))*10^8//Wavelength of radiation in Angstrom
+
+//Output
+printf('Wavelength of radiation is %3.1f Angstrom',w)
diff --git a/1958/CH10/EX10.3/Chapter10_example3.sce b/1958/CH10/EX10.3/Chapter10_example3.sce
new file mode 100755
index 000000000..25066cbfc
--- /dev/null
+++ b/1958/CH10/EX10.3/Chapter10_example3.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+d1=6000//Diffraction grating have number of lines per cm
+w=6000//Wavelength in Angstrom
+
+//Calculations
+n=(1/(d1*w*10^-8))//Maxmum order of diffraction
+
+//Output
+printf('Maximum order of diffraction that can be observed is %i',n)
diff --git a/1958/CH10/EX10.4/Chapter10_example4.sce b/1958/CH10/EX10.4/Chapter10_example4.sce
new file mode 100755
index 000000000..18cc64977
--- /dev/null
+++ b/1958/CH10/EX10.4/Chapter10_example4.sce
@@ -0,0 +1,10 @@
+clc
+clear
+//Input data
+B=(3*3.14)/2//First secondary maxima at B
+
+//Calculations
+I=(sin(B)/B)^2//Ratio of intensity of central maxima to first secondary maxima
+
+//Output
+printf('Ratio of intensity of central maxima to first secondary maxima is %3.3f',I)
diff --git a/1958/CH10/EX10.5/Chapter10_example5.sce b/1958/CH10/EX10.5/Chapter10_example5.sce
new file mode 100755
index 000000000..fad1ceda7
--- /dev/null
+++ b/1958/CH10/EX10.5/Chapter10_example5.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+w=6400//Wave length of light in Angstrom
+w1=0.3//Slit width in mm
+d=110//Distance of screen from the slit in cm
+n=3//order
+
+//Calculations
+x=((n*w*10^-10*(d/100))/(w1*10^-3))*1000//Distance between the centre of the central maximum and the third dark fringe in mm
+
+//Output
+printf('Distance between the centre of the central maximum and the third dark fringe is %3.2f mm',x)
diff --git a/1958/CH11/EX11.1/Chapter11_example1.sce b/1958/CH11/EX11.1/Chapter11_example1.sce
new file mode 100755
index 000000000..21d680e09
--- /dev/null
+++ b/1958/CH11/EX11.1/Chapter11_example1.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+r1=1.538//Refractive index of the crown glass for violet
+r2=1.52//Refractive index of the crown glass for red
+
+//Calculations
+ip1=atand(r1)//Polarizing angle in degrees
+ip2=atand(r2)//Polarizing angle in degrees
+
+//Output
+printf('Polarizing angles for violet and red are %3.2f degrees and %3.2f degrees',ip1,ip2)
diff --git a/1958/CH11/EX11.2/Chapter11_example2.sce b/1958/CH11/EX11.2/Chapter11_example2.sce
new file mode 100755
index 000000000..59eda7732
--- /dev/null
+++ b/1958/CH11/EX11.2/Chapter11_example2.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+I=0.09//Ratio of observed intensity to the initial intensity
+
+//Calculations
+q=acosd(sqrt(I))//Angle between the plane of transmission of the analyser and that of the polarizer in degrees
+
+//Output
+printf('Angle between the plane of transmission of the analyser and that of the polarizer is %3.2f degrees',q)
+
diff --git a/1958/CH12/EX12.1/Chapter12_example12_1.sce b/1958/CH12/EX12.1/Chapter12_example12_1.sce
new file mode 100755
index 000000000..caf146b70
--- /dev/null
+++ b/1958/CH12/EX12.1/Chapter12_example12_1.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//Input data
+R=[6,6,12]//Resistances from circuit diagram 12.34 on page no.192 in ohms
+V=[5,2]//Voltage in V from circuit diagram 12.20 on page no.192
+
+//Calculations
+Re=((R(2)*R(3))/(R(2)+R(3)))+R(1)//Equivalent resistance in ohms for 5V supply
+I=V(1)/Re//Equivalent current in A for 5V supply
+Ve=((R(2)*R(3))/(R(2)+R(3)))*I//Voltage across 5V supply in V
+I1=(Ve/R(3))//Current in A
+Re2=(1/((1/(R(1)))+(1/(R(2)))))+R(3)//Equivalent resistance in ohms for 2V supply
+I2=V(2)/Re2//Equivalent current in A for 2V supply
+Ix=I1-I2//Current through 12 ohm resistance in A
+Iy=1/Ix//For displaying output in fraction
+
+//Output
+printf('The current through %i ohm resistor is 1/%i A',R(3),Iy)
diff --git a/1958/CH12/EX12.2/Chapter12_example12_2.sce b/1958/CH12/EX12.2/Chapter12_example12_2.sce
new file mode 100755
index 000000000..b8ada7ba6
--- /dev/null
+++ b/1958/CH12/EX12.2/Chapter12_example12_2.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+R=[3,5,6,7]//Resistances from circuit diagram 12.36(a) on page no. 193 in ohms
+V=12//Voltage in V from circuit diagram 12.36(a) on page no. 193
+
+//Calculations
+Vth=(V*R(3))/(R(3)+R(4)+R(2))//Equivalent voltage in V
+Rth=R(1)+(((R(2)+R(4))*R(3))/(R(2)+R(4)+R(3)))//Equivalent resistance in ohms
+
+//Output
+printf('Thevenin equivalent resistance is %i ohms \n Thevenin equivalent voltage is %i V',Rth,Vth)
diff --git a/1958/CH12/EX12.3/Chapter12_example12_3.sce b/1958/CH12/EX12.3/Chapter12_example12_3.sce
new file mode 100755
index 000000000..aa0dafc9d
--- /dev/null
+++ b/1958/CH12/EX12.3/Chapter12_example12_3.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Inut data
+R=[2,3,4]//Resistances from circuit diagram 12.37(a) on page no.194 in ohms
+V=5//Voltage in V from circuit diagram 12.37(a) on page no.194
+
+//Calculations
+RN=((R(1)+R(2))*R(3))/(R(1)+R(2)+R(3))//Equivalent resistance in ohms
+IN=V/(R(1)+R(2))//Equivalent current in A
+
+//Output
+printf('Nortons equivalent resistance is %3.2f ohms \n Nortons equivalent current is %i A',RN,IN)
diff --git a/1958/CH12/EX12.4/Chapter12_example12_4.sce b/1958/CH12/EX12.4/Chapter12_example12_4.sce
new file mode 100755
index 000000000..b8ea30ced
--- /dev/null
+++ b/1958/CH12/EX12.4/Chapter12_example12_4.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+C=10*10^-6//Capicitance in F
+R=10*10^3//Resistance in ohms
+e=6//Emf of the battery in V
+
+//Calculations
+t=C*R//Time constant in s
+Qm=(C*e)/10^-6//Maximum charge in micro C
+Im=(e/R)*1000//Maximum current in mA
+
+//Output
+printf('Time constant of the circuit is %3.1f s \n Maximum charge on the capacitor is %i micro C \n Maximum current in the circuit is %3.1f mA \n Charge at time t is Q(t) = %i(1-exp(-t/%3.1f)) micro C \n Currrent at time t is I(t) = %3.1f exp(-t/%3.1f) mA',t,Qm,Im,Qm,t,Im,t)
diff --git a/1958/CH12/EX12.5/Chapter12_example12_5.sce b/1958/CH12/EX12.5/Chapter12_example12_5.sce
new file mode 100755
index 000000000..f5b29f409
--- /dev/null
+++ b/1958/CH12/EX12.5/Chapter12_example12_5.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+L=50//Inductance in mH
+R=5//Resistance in ohms
+V=6//Volatage of the battery in V
+t=5//Time in ms
+
+//Calculations
+t1=(L/R)//Time constant in ms
+I=(V/R)*(1-exp(-t/t1))//Current in A
+
+//Output
+printf('The time constant of the circuit is %i ms \n The current in the circuit is %3.2f A',t1,I)
diff --git a/1958/CH12/EX12.6/Chapter12_example12_6.sce b/1958/CH12/EX12.6/Chapter12_example12_6.sce
new file mode 100755
index 000000000..4bb2845d6
--- /dev/null
+++ b/1958/CH12/EX12.6/Chapter12_example12_6.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+L=6//Inductance in mH
+C=12//Capacitance in pF
+V=6//Voltage of the battery in V
+
+//Calculations
+f=(1/(2*3.14*sqrt(L*10^-3*C*10^-12)))/10^5//Frequency of oscillation in Hz*10^5
+Qm=(C*10^-12*V)/10^-12//Maximum charge in C *10^-12
+Im=(2*3.14*f*10^5*Qm*10^-12)/10^-6//Maximum current in micro A
+
+//Output
+printf('Frequency of oscillation is %3.2f *10^5 Hz \n The maximum value of charge on capacitor is %i *10^-12 C \n The current in the circuit is %i micro A',f,Qm,Im)
diff --git a/1958/CH12/EX12.e.1/Chapter12_example1.sce b/1958/CH12/EX12.e.1/Chapter12_example1.sce
new file mode 100755
index 000000000..d68b4a593
--- /dev/null
+++ b/1958/CH12/EX12.e.1/Chapter12_example1.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+V=10//voltage in V from fig.12.7 on page no.175
+R=10//Resistance in ohms from fig.12.7 on page no.175
+
+//Calculations
+I=(V/R)//Current in A
+
+//Output
+printf('Current in the circuit shown in fig.12.7 is %i A',I)
diff --git a/1958/CH12/EX12.e.2/Chapter12_example2.sce b/1958/CH12/EX12.e.2/Chapter12_example2.sce
new file mode 100755
index 000000000..4ef1e4660
--- /dev/null
+++ b/1958/CH12/EX12.e.2/Chapter12_example2.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//Input data
+R=[6,6,3]//Resistances in the circuit from circuit diagram 12.9 on page no. 175 in ohms
+V=[24,16]//Voltages in the circuit from circuit diagram 12.9 on page no. 175 in V
+
+//Calculations
+Re1=1/((1/R(2))+(1/R(3)))//Equivalent resistance for parallel combination in ohms
+Re=R(1)+Re1//Equivalent resistance of the ciriuit in ohms
+I1=(V(1)/Re)//Current across the resistors in A
+pd=(I1*Re1)//Potential difference across A and B from circuit diagram 12.9 on page no. 175 in V
+I2=(pd/R(3))//Current across 3 ohms resistance in A
+I3=(V(2)/(R(1)+R(2)))//Current in A
+I=I2+I3//Total current
+
+//Output
+printf('The current shown in the circiut is %3.1f A',I)
diff --git a/1958/CH12/EX12.e.3/Chapter12_example3.sce b/1958/CH12/EX12.e.3/Chapter12_example3.sce
new file mode 100755
index 000000000..3faeacb43
--- /dev/null
+++ b/1958/CH12/EX12.e.3/Chapter12_example3.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+R=[4,12,2,12]//Resistances from circuit diagram 12.12 on page no. 177 in ohms
+V=12//Voltage in V from circuit diagram 12.12 on page no. 177
+
+//Calculations
+Rth=((R(1)+R(3))*R(2))/(R(1)+R(3)+R(2))//Equivalent resistance in ohms
+Vth=(V*R(2))/(R(1)+R(3)+R(2))//Equivalent voltage in V
+I=(Vth/(Rth+R(4)))//Current in A
+
+//Output
+printf('The current through the resistor is %3.1f A',I)
diff --git a/1958/CH12/EX12.e.4/Chapter12_example4.sce b/1958/CH12/EX12.e.4/Chapter12_example4.sce
new file mode 100755
index 000000000..e5b0a1b33
--- /dev/null
+++ b/1958/CH12/EX12.e.4/Chapter12_example4.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+R=[2,3,6]//Resistances from circuit diagram 12.15 on page no. 178 in ohms
+I=2//Current in A from circuit diagram 12.15 on page no. 178
+
+//Calculations
+Rth=(R(2)+R(3))//Equivalent resistance in ohms
+Vth=(R(3)*I)//Equivalent voltage in V
+
+//Output
+printf('Thevenin equivalent resistance is %i ohms \n Thevenin equivalent voltage is %i V',Rth,Vth)
diff --git a/1958/CH12/EX12.e.5/Chapter12_example5.sce b/1958/CH12/EX12.e.5/Chapter12_example5.sce
new file mode 100755
index 000000000..8ace7fa46
--- /dev/null
+++ b/1958/CH12/EX12.e.5/Chapter12_example5.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+R=[12,8,3,6]//Resistances from circuit diagram 12.17 on page no.179 in ohms
+V=12//Voltage in V from circuit diagram 12.17 on page no.179
+
+//Calculations
+Rth=((R(3)*R(1))/(R(3)+R(1)))+((R(2)*R(4))/(R(2)+R(4)))//Equivalent resistance in ohms
+Vth=2.74//Thevenin voltage taken from the circuit diagram 12.19(a) on page no.179 in V
+
+//Output
+printf('Thevenin equivalent resistance is %3.2f ohms \n Thevenin equivalent voltage is %3.2f V',Rth,Vth)
diff --git a/1958/CH12/EX12.e.6/Chapter12_example6.sce b/1958/CH12/EX12.e.6/Chapter12_example6.sce
new file mode 100755
index 000000000..83e52ac28
--- /dev/null
+++ b/1958/CH12/EX12.e.6/Chapter12_example6.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+R=[4,12,2,12]//Resistances from circuit diagram 12.20 on page no.180 in ohms
+V=12//Voltage in V from circuit diagram 12.20 on page no.180
+
+//Calculations
+RN=((R(1)+R(3))*R(2))/(R(1)+R(3)+R(2))//Equivalent resistance in ohms
+IN=(V/(RN+R(3)))//Equivalent current in A
+
+//Output
+printf('Nortons equivalent resistance is %i ohms \n Nortons equivalent current is %i A',RN,IN)
diff --git a/1958/CH12/EX12.e.7/Chapter12_example7.sce b/1958/CH12/EX12.e.7/Chapter12_example7.sce
new file mode 100755
index 000000000..966692d44
--- /dev/null
+++ b/1958/CH12/EX12.e.7/Chapter12_example7.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Inut data
+R=[4,5,6]//Resistances from circuit diagram 12.22 on page no.181 in ohms
+I=2//Current in A from circuit diagram 12.22 on page no.181
+
+//Calculations
+RN=(R(1)+R(2)+R(3))//Equivalent resistance in ohms
+IN=(R(1)*I)/RN//Equivalent curren in A
+
+//Output
+printf('Nortons equivalent resistance is %i ohms \n Nortons equivalent current is %3.3f A',RN,IN)
diff --git a/1958/CH13/EX13.1/Chapter13_example1.sce b/1958/CH13/EX13.1/Chapter13_example1.sce
new file mode 100755
index 000000000..c6bf8518f
--- /dev/null
+++ b/1958/CH13/EX13.1/Chapter13_example1.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+Vm=100//Maximum voltage in V
+R=50//resitance in ohms
+
+//Calculations
+Vrms=(Vm/sqrt(2))//rms voltage in V
+Irms=(Vrms/R)//rms current in A
+Im=(Vm/R)//Maximum current in A
+
+//Output
+printf('rms current is %3.2f A and maximum current is %i A',Irms,Im)
diff --git a/1958/CH13/EX13.2/Chapter13_example2.sce b/1958/CH13/EX13.2/Chapter13_example2.sce
new file mode 100755
index 000000000..24c0792b1
--- /dev/null
+++ b/1958/CH13/EX13.2/Chapter13_example2.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+c=50//Capacitor in micro F
+Vm=220//Maximum voltage in V
+f=50//Frequency in Hz
+
+//Calculations
+Xc=(1/(2*3.14*c*10^-6*f))//Reactance in ohms
+I=(Vm/Xc)//Maximum current in A
+Irms=I/sqrt(2)//rms current in A
+
+//Output
+printf('rms current is %3.2f A',Irms)
diff --git a/1958/CH13/EX13.3/Chapter13_example3.sce b/1958/CH13/EX13.3/Chapter13_example3.sce
new file mode 100755
index 000000000..143129329
--- /dev/null
+++ b/1958/CH13/EX13.3/Chapter13_example3.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+L=2//Inductance in H
+Vrms=220//rms voltage in V
+f=50//Frequency in Hz
+
+//Calculations
+Xl=(2*3.14*f*L)//Reactance in ohms
+Irms=(Vrms/Xl)//rms current in A
+
+//Output
+printf('rms current is %3.3f A',Irms)
diff --git a/1958/CH13/EX13.4/Chapter13_example4.sce b/1958/CH13/EX13.4/Chapter13_example4.sce
new file mode 100755
index 000000000..7ddbf515e
--- /dev/null
+++ b/1958/CH13/EX13.4/Chapter13_example4.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+Vm=220//Maximum voltage in V
+f=50//frequency in Hz
+R=2000//Resistance in ohms
+C=5*10^-6//Capacitor in F
+
+//Calculations
+Xc=(1/(2*3.14*f*C))//Reactance in ohms
+Z=sqrt(R^2+Xc^2)//Impedence in ohm
+Vc=(Vm*Xc)/Z//Maximum potential difference across the capacitor in V
+
+//Output
+printf('Maximum potential difference across the capacitor is %3.2f V',Vc)
diff --git a/1958/CH13/EX13.5/Chapter13_example5.sce b/1958/CH13/EX13.5/Chapter13_example5.sce
new file mode 100755
index 000000000..d7fb4906d
--- /dev/null
+++ b/1958/CH13/EX13.5/Chapter13_example5.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+R=5000//Resistance in ohms
+L=2//Inductance in H
+Vrms=200//rms Voltage in V
+f=50//Frequency in Hz
+
+//Calculations
+Xl=(2*3.14*f*L)//Inductive reactance in ohms
+Z=sqrt(R^2+Xl^2)//Impedence in ohms
+Vl=(Vrms*Xl)/Z//rms potential difference across the inductor in V
+
+//Output
+printf('rms potential difference across the inductor is %3.2f V',Vl)
diff --git a/1958/CH13/EX13.6/Chapter13_example6.sce b/1958/CH13/EX13.6/Chapter13_example6.sce
new file mode 100755
index 000000000..9f6825f95
--- /dev/null
+++ b/1958/CH13/EX13.6/Chapter13_example6.sce
@@ -0,0 +1,21 @@
+clc
+clear
+//Input data
+R=10//Resistance in ohms
+L=5*10^-3//Inductance in H
+C=10*10^-6//Capacitance in F
+V=100//Voltage in V
+f=50//Frequency in Hz
+
+//Calculations
+Xc=(1/(2*3.14*f*C))//Capacitive reactance in ohms
+Xl=(2*3.14*f*L)//Inductive reactance in ohms
+Z=sqrt(R^2+(Xl-Xc)^2)//Impedence in ohms
+I=(V/Z)//Current in A
+q=atand((Xl-Xc)/R)//Phase angle in degrees
+Vr=(I*R)//Voltage across resistor in V
+Vc=(I*Xc)//Voltage across capacitor in V
+Vl=(I*Xl)//Voltage across inductor in V
+
+//Output
+printf('Total impedence is %3.1f ohms \n Current is %3.3f A \n Phase angle is %3.2f degrees \n Voltage across resistor is %3.2f V \n Voltage across capacitor is %3.2f V \n Voltage across inductor is %3.3f V',Z,I,q,Vr,Vc,Vl)
diff --git a/1958/CH13/EX13.7/Chapter13_example7.sce b/1958/CH13/EX13.7/Chapter13_example7.sce
new file mode 100755
index 000000000..89233ade8
--- /dev/null
+++ b/1958/CH13/EX13.7/Chapter13_example7.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+R=5//Resistance in ohms
+L=2*10^-3//Inductance in H
+C=25*10^-6//Capacitance in F
+V=50//Voltage in V
+
+//Calculations
+w=1/sqrt(L*C)//Angular speed in rad/s
+f=(w/(2*3.14))//Frequency in Hz
+Q=(w*L)/R//Q factor
+
+//Output
+printf('Resonating frequency is %3.2f Hz \n Q factor is %3.2f',f,Q)
diff --git a/1958/CH13/EX13.8/Chapter13_example8.sce b/1958/CH13/EX13.8/Chapter13_example8.sce
new file mode 100755
index 000000000..24512ac0f
--- /dev/null
+++ b/1958/CH13/EX13.8/Chapter13_example8.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+L=(20*10^-3)//Inductance in H
+Q=8//Q factor
+f=1000//Frequency in Hz
+
+//Calculations
+R=(2*3.14*f*L)/Q//Resistance in ohms
+C=(1/((2*3.14*f)^2*L))/10^-6//Capacitance in microF
+
+//Output
+printf('Capacitance and resistance of coil is %3.2f micro F and %3.1f ohms respectively',C,R)
diff --git a/1958/CH15/EX15.1/Chapter15_example1.sce b/1958/CH15/EX15.1/Chapter15_example1.sce
new file mode 100755
index 000000000..48cc6de4d
--- /dev/null
+++ b/1958/CH15/EX15.1/Chapter15_example1.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+E=5000//Intensity of electric field in N/C
+d=0.02//Distance in m
+e=(1.6*10^-19)//Charge of the electron in C
+m=(9.1*10^-31)//Mass of the electron in kg
+
+//Calculations
+v=sqrt(2*e*E*d/m)/10^6//Speed of the electron in m/s *10^6
+
+//Output
+printf('Speed of the electron is %3.2f *10^6 m/s',v)
diff --git a/1958/CH15/EX15.2/Chapter15_example2.sce b/1958/CH15/EX15.2/Chapter15_example2.sce
new file mode 100755
index 000000000..1ea086892
--- /dev/null
+++ b/1958/CH15/EX15.2/Chapter15_example2.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+v=(5*10^6)//Velocity of the electron in m/s
+E=2000//Intensity of electric field in N/C
+d=0.06//Distance in m
+e=(1.6*10^-19)//Charge of the electron in C
+m=(9.1*10^-31)//Mass of the electron in kg
+
+
+//Calculations
+y=((-e*E*d^2)/(2*m*v^2))*100//Vertical displacement of the electron when it just leaves the electric field in cm
+
+//Output
+printf('Vertical displacement of the electron when it just leaves the electric field is %3.2f cm',y)
diff --git a/1958/CH15/EX15.3/Chapter15_example3.sce b/1958/CH15/EX15.3/Chapter15_example3.sce
new file mode 100755
index 000000000..b9f095cf8
--- /dev/null
+++ b/1958/CH15/EX15.3/Chapter15_example3.sce
@@ -0,0 +1,13 @@
+clc
+clear
+v=(4*10^5)//Velocity of the positively charged particle in m/s
+E=300//Intensity of electric field in N/C
+e=(1.6*10^-19)//Charge of the positively charged particle in C
+m=(1.67*10^-27)//Mass of the positively charged particle in kg
+q=35//Angle made by the particle in degrees
+
+//Calculations
+t=((v*sind(q)*m)/(e*E))/10^-6//Time required by the particle to reach the maximum height in the electric field in micro s
+
+//Output
+printf('Time required by the particle to reach the maximum height in the electric field is %3.2f micro s',t)
diff --git a/1958/CH15/EX15.4/Chapter15_example4.sce b/1958/CH15/EX15.4/Chapter15_example4.sce
new file mode 100755
index 000000000..8dcd81585
--- /dev/null
+++ b/1958/CH15/EX15.4/Chapter15_example4.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+r=0.3//Radius of circular orbit in m
+B=0.38//Magnetic field strength in T
+e=(1.6*10^-19)//Charge of the proton in C
+m=(1.672*10^-27)//Mass of the proton in kg
+
+//Calculations
+v=((e*B*r)/m)/10^6//Orbital speed of the proton in m/s
+
+//Output
+printf('Orbital speed of the proton is %3.0f *10^6 m/s',v)
diff --git a/1958/CH15/EX15.5/Chapter15_example5.sce b/1958/CH15/EX15.5/Chapter15_example5.sce
new file mode 100755
index 000000000..06643f2d1
--- /dev/null
+++ b/1958/CH15/EX15.5/Chapter15_example5.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+e=(1.6*10^-19)//Charge of the proton in C
+m=(1.67*10^-27)//Mass of the proton in kg
+B=0.8//Magnetic field strength in T
+v=[4*10^6,3*10^6]//Velocity of charged particle in vxi+vyj form in m/s
+
+//Calculations
+p=(v(1)*2*3.14*m)/(e*B)//Pitch of the helix in m
+R=(m*v(2))/(e*B)//Radius of the trajectory in m
+
+//Output
+printf('The pitch of the helix is %3.3f m \n Radius of the trajectory is %3.5f m',p,R)
diff --git a/1958/CH16/EX16.1/Chapter16_example1.sce b/1958/CH16/EX16.1/Chapter16_example1.sce
new file mode 100755
index 000000000..ee39a5c46
--- /dev/null
+++ b/1958/CH16/EX16.1/Chapter16_example1.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//Input data
+E=(200*100)//Electric field in V/m
+B=0.2//Magnetic field in T
+B1=0.3//Magnetic field in the main chamber in T
+q=(1.6*10^-19)//Charge of the electron in coloumbs
+m=[12,13]//Carbon isotopes C12 and C13
+M=(1.67*10^-27)//AMU(Atomic Mass Unit) in kg
+
+//Calculations
+v=(E/B)//Velocity in m/s
+s=(2*v*(m(2)-m(1))*M*100)/(q*B1)//Seperation in cm
+
+//Output
+printf('Seperation on photographic plate is %3.4f cm',s)
diff --git a/1958/CH16/EX16.2/Chapter16_example2.sce b/1958/CH16/EX16.2/Chapter16_example2.sce
new file mode 100755
index 000000000..fdca3af9e
--- /dev/null
+++ b/1958/CH16/EX16.2/Chapter16_example2.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+a=20//Atomic number of Ca
+m=40//mass number of Ca
+M=39.962591//Mass of Ca nucleus in u
+mp=1.007276//Mass of proton in AMU
+mn=1.008665//Mass of neutron in AMU
+
+//Calculations
+BE=(1/m)*((a*mp)+(a*mn)-M)*1000//BE per nucleon in MeV
+
+//Output
+printf('BE per nucleon is %3.6f MeV',BE)
diff --git a/1958/CH17/EX17.1/Chapter17_example1.sce b/1958/CH17/EX17.1/Chapter17_example1.sce
new file mode 100755
index 000000000..296858a88
--- /dev/null
+++ b/1958/CH17/EX17.1/Chapter17_example1.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//Input data
+w=4000//Wavelength of the light in Angstrom units
+wf=2.25//Work function of potassium in eV
+m=(9.1*10^-31)//Mass of the electron in kg
+v=(3*10^8)//Velocity of light in m/s
+c=(1.6*10^-19)//Charge of the electron in coloumbs
+h=6.626*10^-34//Plancks constant in Js
+
+//Calculations
+E=(h*v)/(w*10^-10*c)//Energy of incident photon in eV
+KE=(E-wf)//Kinetic energy in eV
+
+//Output
+printf('Maximum kinetic energy of photoelectron is %3.3f eV',KE)
diff --git a/1958/CH17/EX17.2/Chapter17_example2.sce b/1958/CH17/EX17.2/Chapter17_example2.sce
new file mode 100755
index 000000000..d1e1bc859
--- /dev/null
+++ b/1958/CH17/EX17.2/Chapter17_example2.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+wf=1.9//Workfunction of the material in eV
+w=3000//Wavelength of the light in Angstrom units
+v=(3*10^8)//Velocity of light in m/s
+c=(1.6*10^-19)//Charge of the electron in coloumbs
+h=6.626*10^-34//Plancks constant in Js
+
+//Calculations
+V=(1/c)*(((h*v)/(w*10^-10))-(wf*c))//Stopping potential in V
+
+//Output
+printf('Stopping potential is %3.2f V',V)
diff --git a/1958/CH17/EX17.3/Chapter17_example3.sce b/1958/CH17/EX17.3/Chapter17_example3.sce
new file mode 100755
index 000000000..01490b684
--- /dev/null
+++ b/1958/CH17/EX17.3/Chapter17_example3.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+V=(70*10^3)//Accelerating potential in V
+v=(3*10^8)//Velocity of light in m/s
+c=(1.6*10^-19)//Charge of the electron in coloumbs
+h=6.626*10^-34//Plancks constant in Js
+
+//Calculations
+lmin=((h*v)/(c*V))/10^-9//Shortest wavelength of X-rays produced in mm
+
+//Output
+printf('Shortest wavelength of X-rays produced is %3.4f mm',lmin)
diff --git a/1958/CH17/EX17.4/Chapter17_example4.sce b/1958/CH17/EX17.4/Chapter17_example4.sce
new file mode 100755
index 000000000..124b5289a
--- /dev/null
+++ b/1958/CH17/EX17.4/Chapter17_example4.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+w1=2//Wavelength in Angstrom
+Z1=24//Target one
+Z2=42//Target two
+a=1//Constant value
+
+//Calculations
+w2=w1*((Z1-a)/(Z2-a))^2//Wavelength in Angstrom
+
+//Output
+printf('Wavelength is %3.2f Angstrom',w2)
diff --git a/1958/CH17/EX17.5/Chapter17_example5.sce b/1958/CH17/EX17.5/Chapter17_example5.sce
new file mode 100755
index 000000000..b5655dd6c
--- /dev/null
+++ b/1958/CH17/EX17.5/Chapter17_example5.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//Input data
+w=3//Wavelength of the light in Angstrom
+v=(3*10^8)//Velocity of light in m/s
+h=6.626*10^-34//Plancks constant in Js
+q=40//Scattering angle in degrees
+m=(9.11*10^-31)//Mass of electron in kg
+c=(1.6*10^-19)//Charge of the electron in coloumbs
+
+//Calculations
+dl=(h/(m*v))*(1-cosd(q))/10^-10//Wavelength in Angstrom
+l=(w+dl)//Wavelength of scattered X-rays
+
+//Output
+printf('Wavelength of scattered X-rays is %3.6f Angstrom',l)
diff --git a/1958/CH2/EX2.1/Chapter2_example1.sce b/1958/CH2/EX2.1/Chapter2_example1.sce
new file mode 100755
index 000000000..8b3aa5bbd
--- /dev/null
+++ b/1958/CH2/EX2.1/Chapter2_example1.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+F=[6,2]//Constant force in vector form 6i+2j in N
+s=[3,5]//Displacement in vector form 3i+5j in N
+
+//Calculations
+W=(F(1)*s(1))+(F(2)*s(2))//Workdone in J
+q=acosd(W/(sqrt(F(1)^2+F(2)^2)*sqrt(s(1)^2+s(2)^2)))//Angle between Force and displacement in degrees
+
+//Output
+printf('Workdone by the force is %3.0f J \n Angle between Force and displacement is %3.1f degrees',W,q)
diff --git a/1958/CH2/EX2.2/Chapter2_example2.sce b/1958/CH2/EX2.2/Chapter2_example2.sce
new file mode 100755
index 000000000..d0a0c8218
--- /dev/null
+++ b/1958/CH2/EX2.2/Chapter2_example2.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+m=10//Mass of block in kg
+q=40//Angle made by the force with horizontal in degrees
+s=5//Horizontal displacement of the block in m
+u=0.3//Coefficient of kinematic friction
+
+//Calculations
+F=(u*m*9.8)/(cosd(q)+(u*sind(q)))//Pulling force in N
+W=(F*cosd(q))*s//Workdone by the pulling force in J
+
+//Output
+printf('Workdone by the pulling force is %3.2f J',W)
diff --git a/1958/CH2/EX2.3/Chapter2_example3.sce b/1958/CH2/EX2.3/Chapter2_example3.sce
new file mode 100755
index 000000000..abdb5f62c
--- /dev/null
+++ b/1958/CH2/EX2.3/Chapter2_example3.sce
@@ -0,0 +1,22 @@
+clc
+clear
+//Input data
+r1=[0,1]//Interval in m
+r2=[1,2]//Interval in m
+r3=[2,4]//Interval in m
+r4=[0,5]//Interval in m
+y=[6,12]//Y- coordinates from the graph 2.5 on page no. 27
+
+//Calculations
+a1=(1/2)*(r1(2)-r1(1))*y(1)//Area under the curve in J
+a2=(r2(2)-r2(1))*y(1)//Area under the curve in J
+a3=((r3(2)-r3(1))*y(1))+((1/2)*((r3(2)-r3(1))/2)*(y(2)-y(1)))+(((r3(2)-r3(1))/2)*(y(2)-y(1)))//Area under the curve in J
+a4=(a1+a2+a3+((1/2)*y(2)*(r4(2)-r3(2))))//Area under the curve in J
+
+//Output
+X=[0,1,2,3,4,5]//X- coordinate is distance in m
+Y=[0,6,6,12,12,0]//Y- coordinate is Force in N
+plot(X,Y)//Graph shown in figure 2.5 on page no.27
+xtitle('Distance versus Force','Distance in m','Force in N')
+
+printf('The work done in the intervals: \n (a)%i<=x<=%i m is %i J \n (b)%i<=x<=%i m is %i J \n (c)%i<=x<=%i m is %i J \n (d)%i<=x<=%i m is %i J \n',r1(1),r1(2),a1,r2(1),r2(2),a2,r3(1),r3(2),a3,r4(1),r4(2),a4)
diff --git a/1958/CH2/EX2.4/Chapter2_example4.sce b/1958/CH2/EX2.4/Chapter2_example4.sce
new file mode 100755
index 000000000..8989a81b2
--- /dev/null
+++ b/1958/CH2/EX2.4/Chapter2_example4.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+m=0.05//Mass of the body in kg
+v=[3,5]//Velocity in vector form 3i+4j in m/s
+
+//Calculations
+ke=(1/2)*m*(v(1)^2+v(2)^2)//Kinetic energy in J
+
+//Output
+printf('Kinetic energy is %3.2f J',ke)
diff --git a/1958/CH2/EX2.5/Chapter2_example5.sce b/1958/CH2/EX2.5/Chapter2_example5.sce
new file mode 100755
index 000000000..07cb2eba7
--- /dev/null
+++ b/1958/CH2/EX2.5/Chapter2_example5.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+k=50//Spring force constant in N/m
+x=-0.02//Length of compression in m
+
+//Calculations
+W=(1/2)*k*(x)^2//Work done by the spring in J
+
+//Output
+printf('Work done by the spring when the block comes from the compressed position to the equilibrium position is %3.2f J',W)
diff --git a/1958/CH2/EX2.6/Chapter2_example6.sce b/1958/CH2/EX2.6/Chapter2_example6.sce
new file mode 100755
index 000000000..8669d45f4
--- /dev/null
+++ b/1958/CH2/EX2.6/Chapter2_example6.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+x=0.03//Length stretched by the spring in m
+m=0.25//Mass of the body in kg
+
+//Calculations
+k=(m*9.8)/x//Force constant of the spring in N/m
+
+//Output
+printf('Force constant of the spring is %3.2f N/m',k)
diff --git a/1958/CH2/EX2.7/Chapter2_example7.sce b/1958/CH2/EX2.7/Chapter2_example7.sce
new file mode 100755
index 000000000..625f4884f
--- /dev/null
+++ b/1958/CH2/EX2.7/Chapter2_example7.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+m=5//Mass of block in kg
+F=20//Constant force in N
+x=6//Distance moved by the block in m
+
+//Calculations
+W=(F*x)//Workdone by the block in J
+v=sqrt((2*W)/m)//Speed of the block in m/s
+
+//Output
+printf('Speed of the block when it moves through a distance of %3.0f m is %3.2f m/s',x,v)
diff --git a/1958/CH2/EX2.8/Chapter2_example8.sce b/1958/CH2/EX2.8/Chapter2_example8.sce
new file mode 100755
index 000000000..e35372e2c
--- /dev/null
+++ b/1958/CH2/EX2.8/Chapter2_example8.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+m=50//Mass of the object in kg
+v=8//Speed in m/s
+t=4//Time taken in s
+
+//Calculations
+a=(v-0)/t//Acceleration in m/s^2
+s=(v^2/(2*a))//Distance in m
+W=(m*a*s)//Workdone in J
+P=(W/t)//Power delivered in watt
+
+//Output
+printf('Workdone on the object is %i J \n The average power delivered by the force in the first %i s is %i watt',W,t,P)
diff --git a/1958/CH3/EX3.1/Chapter3_example1.sce b/1958/CH3/EX3.1/Chapter3_example1.sce
new file mode 100755
index 000000000..ca07a5fec
--- /dev/null
+++ b/1958/CH3/EX3.1/Chapter3_example1.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//Input data
+m=0.04//Mass of stone in kg
+vi=25//Initial velocity in m/s
+vf=0//Final velocity in m/s
+yi=0//Initial height in m
+
+//Calculations
+Ui=(m*9.81*yi)//Initial potential energy in J
+Ki=(1/2)*m*vi^2//Initial kinetic energy in J
+Etotal=(Ui+Ki)//Total energy in J
+h=(Etotal/(m*9.8))//Maximum height in m
+//when the stone is at (2/3)h, total energy is again same
+v=sqrt((Etotal-(m*9.8*(2/3)*h))/((1/2)*m))//Velocity at (2/3) of its maximum height in m/s
+
+//Output
+printf('Maximum height it will reach is %3.1f m \n Potential energy at that height is %3.1f J \n velocity when it is at the two-third of its maximum height is %3.2f m/s',h,Etotal,v)
diff --git a/1958/CH3/EX3.2/Chapter3_example2.sce b/1958/CH3/EX3.2/Chapter3_example2.sce
new file mode 100755
index 000000000..be52d3539
--- /dev/null
+++ b/1958/CH3/EX3.2/Chapter3_example2.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+m=0.5//Mass of the sphere in kg
+vi=100//Initial velocity in m/s
+vf=20//Final velocity in m/s
+
+//Calculations
+h=(vi^2-vf^2)/(2*9.8)//Height in m
+PE=(m*9.8*h)//Potential energy in J
+
+//Calculations
+printf('Potential energy of the sphere is %i J',PE)
diff --git a/1958/CH3/EX3.3/Chapter3_example3.sce b/1958/CH3/EX3.3/Chapter3_example3.sce
new file mode 100755
index 000000000..034d151f0
--- /dev/null
+++ b/1958/CH3/EX3.3/Chapter3_example3.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+m=0.5//Mass of the block in kg
+x=0.05//Distance to which block is pulled in m
+k=300//Force constant of the spring in N/m
+
+//Calculations
+U=(1/2)*k*x^2//Potential energy of the block in J
+v=x*sqrt(k/m)//Velocity of the block in m/s
+
+//Output
+printf('Potential energy of the block when spring is in stretched position is %3.3f J \n Velocity of the block when it passes through the equilibrium position is %3.2f m/s',U,v)
diff --git a/1958/CH3/EX3.4/Chapter3_example4.sce b/1958/CH3/EX3.4/Chapter3_example4.sce
new file mode 100755
index 000000000..b5e6a86ad
--- /dev/null
+++ b/1958/CH3/EX3.4/Chapter3_example4.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+l=0.8//Length of a simple pendulum in m
+q=30//Angle with the vertical through which the bob is released in degrees
+q1=10//Required angle in degrees
+
+//Calculations
+v=sqrt(2*9.8*l*(cosd(q1)-cosd(q)))//Speed in m/s
+
+//Output
+printf('Speed when the bob is at the angle of %i degrees with the vertical is %3.2f m/s',q1,v)
diff --git a/1958/CH3/EX3.5/Chapter3_example5.sce b/1958/CH3/EX3.5/Chapter3_example5.sce
new file mode 100755
index 000000000..ee20f9015
--- /dev/null
+++ b/1958/CH3/EX3.5/Chapter3_example5.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+m=(9.1*10^-31)//Mass of the electron in kg
+v=(3*10^8)//Velocity of light in m/s
+c=(1.6*10^-19)//Charge of the electron in coloumbs
+
+//Calculations
+Re=(m*v^2)/(c*10^6)//Rest energy in MeV
+E=(Re/sqrt(1-0.9^2))//Total energy in MeV
+
+//Output
+printf('Rest energy of the electron is %3.3f MeV \n Total energy is %3.4f MeV',Re,E)
diff --git a/1958/CH4/EX4.1/Chapter4_example1.sce b/1958/CH4/EX4.1/Chapter4_example1.sce
new file mode 100755
index 000000000..490624f6b
--- /dev/null
+++ b/1958/CH4/EX4.1/Chapter4_example1.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+w=4//Angular velocity in rad/s
+m=[1,2,3,4]//Masses in kg from the figure 4.17 on page no.54
+r=[2.5,1.5]//Centre position in m
+
+//Calculations
+I=(m(1)+m(2)+m(3)+m(4))*(r(1)^2+r(2)^2)//Moment of inertia in kg.m^2
+KE=(1/2)*I*w^2//Kinetic energy of the system in J
+
+//Output
+printf('The moment of inertia is %i kg.m^2 \n Kinetic energy of the system is %i J',I,KE)
diff --git a/1958/CH4/EX4.2/Chapter4_example2.sce b/1958/CH4/EX4.2/Chapter4_example2.sce
new file mode 100755
index 000000000..8ba1c7e84
--- /dev/null
+++ b/1958/CH4/EX4.2/Chapter4_example2.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//input data
+q=30//Angle of inclination in degrees
+h=1//Height in m
+
+//Calculations
+v=sqrt((10/7)*9.8*h)//Velocity in m/s
+a=(5/7)*9.8*sind(q)//Acceleration in m/s^2
+
+//Output
+printf('Velocity and acceleration of the centre of mass of the sphere is %3.2f m/s and %3.1f m/s^2',v,a)
diff --git a/1958/CH4/EX4.3/Chapter4_example3.sce b/1958/CH4/EX4.3/Chapter4_example3.sce
new file mode 100755
index 000000000..c7dff0581
--- /dev/null
+++ b/1958/CH4/EX4.3/Chapter4_example3.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+m=1.2//Mass of the rod in kg
+l=0.8//Length of the rod in m
+
+//Calculations
+T=2*3.14*sqrt((2*l)/(3*9.8))//Time period in s
+
+//Output
+printf('Period of oscillation is %3.2f s',T)
diff --git a/1958/CH4/EX4.4/Chapter4_example4.sce b/1958/CH4/EX4.4/Chapter4_example4.sce
new file mode 100755
index 000000000..aff469630
--- /dev/null
+++ b/1958/CH4/EX4.4/Chapter4_example4.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+r=0.2//Radius of uniform disc in m
+d=0.15//Distance from the centre in m
+
+//Calculations
+T=2*3.14*sqrt((17*r)/(12*9.8))//Period of oscillations in s
+
+//Output
+printf('The period of oscillation is %3.2f s',T)
diff --git a/1958/CH4/EX4.5/Chapter4_example5.sce b/1958/CH4/EX4.5/Chapter4_example5.sce
new file mode 100755
index 000000000..a6f62b8a1
--- /dev/null
+++ b/1958/CH4/EX4.5/Chapter4_example5.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+m=3//Mass of the rotor in kg
+I=0.03//Moment of inertia in kg.m^2
+d=0.25//Distance of pivot from the centre in m
+p=30//Precession in rpm
+
+//Calculations
+T=m*9.8*d//Torgue in N.m
+w=(p*2*3.14)/60//Angular velocity in rad/s
+w1=(T/(I*w))//Angular speed of rotation of the rotor in rpm
+
+//Output
+printf('Angular speed of rotation of the rotor is %i rpm',w1)
diff --git a/1958/CH5/EX5.1/Chapter5_example1.sce b/1958/CH5/EX5.1/Chapter5_example1.sce
new file mode 100755
index 000000000..11c06ca0d
--- /dev/null
+++ b/1958/CH5/EX5.1/Chapter5_example1.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//Input data
+m=1//Mass of torsional pendulum in kg
+R=0.06//Radius of torsional pendulum in m
+l=1.2//Length of the wire in m
+r=0.0008//Radius of wire in m
+S=(9*10^9)//Modulus of rigidity of the material in N/m^2
+
+//Calculations
+I=(1/2)*m*R^2//Moment of inertia in kg.m^2
+C=(3.14*S*r^4)/(2*l)//Couple per unit twist in N.m
+T=2*3.14*sqrt(I/C)//Period of pendulum in s
+
+//Output
+printf('Period of pendulum is %3.1f s',T)
diff --git a/1958/CH5/EX5.2/Chapter5_example2.sce b/1958/CH5/EX5.2/Chapter5_example2.sce
new file mode 100755
index 000000000..12c71606d
--- /dev/null
+++ b/1958/CH5/EX5.2/Chapter5_example2.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+l=0.8//Length of the wire in m
+d=(1.8*10^-3)//Diameter of the wire in m
+a=1.5//Angle of twist in degrees
+S=(1.8*10^11)//Modulus of rigidity of the material in N/m^2
+
+//Calculations
+r=(a*3.14)/180//Angle of twist in radians
+W=((3.14*S*(d/2)^4*r^2)/(4*l))/10^-5//Work required to twist the wire in J*10^-5
+
+//Output
+printf('Work required to twist the wire is %3.2f*10^-5 J',W)
diff --git a/1958/CH5/EX5.3/Chapter5_example3.sce b/1958/CH5/EX5.3/Chapter5_example3.sce
new file mode 100755
index 000000000..dee880f5e
--- /dev/null
+++ b/1958/CH5/EX5.3/Chapter5_example3.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//Input data
+l=2//Length of wire in m
+d=(0.4*10^-3)//Diameter of the wire in m
+x=(1.03*10^-3)//Extension in length in m
+L=2//Load in kg
+C=(4.52*10^-6)//Couple in N/m
+a=0.03//Twist angle in radians
+
+//Calculations
+Y=((L*9.8*l)/(x*3.14*(d/2)^2))/10^11//Young's modulus in N/m^2*10^11
+S=((C*2*l)/(3.14*(d/2)^4*a))/10^11//Modulus of rigidity in N/m^2*10^11
+s=(Y/(2*S))-1//Poisson's ratio
+
+//Output
+printf('Youngs modulus is %3.2f*10^11 N/m^2\nModulus of rigidity is %3.2f*10^11 N/m^2\nPoissons ratio is %3.4f',Y,S,s)
diff --git a/1958/CH5/EX5.4/Chapter5_example4.sce b/1958/CH5/EX5.4/Chapter5_example4.sce
new file mode 100755
index 000000000..350a77b3f
--- /dev/null
+++ b/1958/CH5/EX5.4/Chapter5_example4.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+r=0.003//Radius of drop of glycerine in m
+T=(63.1*10^-3)//Surface tension of glycerine in N/m
+
+//Calculations
+P=((2*T)/r)//Excess pressure inside the drop of glycerine in N/m^2
+
+//Output
+printf('Excess pressure inside the drop of glycerine is %3.2f N/m^2',P)
diff --git a/1958/CH5/EX5.5/Chapter5_example5.sce b/1958/CH5/EX5.5/Chapter5_example5.sce
new file mode 100755
index 000000000..52c128109
--- /dev/null
+++ b/1958/CH5/EX5.5/Chapter5_example5.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+r1=0.001//Initial radius in m
+r2=0.004//Final radius in m
+t=2*10^-3//Time in s
+s=(7*10^-2)//Surface tension of water in N/m
+
+//Calculations
+P=((2*s)*((1/r2)-(1/r1)))/(t*10^4)//Rate of change of pressure in N/m^2.s*10^4
+
+//Output
+printf('Rate of change of pressure is %3.2f*10^4 N/m^2.s',P)
diff --git a/1958/CH5/EX5.6/Chapter5_example6.sce b/1958/CH5/EX5.6/Chapter5_example6.sce
new file mode 100755
index 000000000..3b346fcea
--- /dev/null
+++ b/1958/CH5/EX5.6/Chapter5_example6.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+d=0.02//Diamter of soap bubble in m
+s=(25*10^-3)//Surface tension in N/m
+//Initial surface area of the bubble is zero and final area is 2*4*pie*r^2 where r is the radius of the bubble
+
+//Calculations
+W=(s*2*4*3.14*(d/2)^2)/10^-5//Work done in blowing a soap bubble in J*10^-5
+
+//Output
+printf('Work done in blowing a soap bubble is %3.2f*10^-5 J',W)
diff --git a/1958/CH5/EX5.7/Chapter5_example7.sce b/1958/CH5/EX5.7/Chapter5_example7.sce
new file mode 100755
index 000000000..9bf365950
--- /dev/null
+++ b/1958/CH5/EX5.7/Chapter5_example7.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+r=0.01//Radius of liquid drop in m
+n=500//Number of drops
+s=(63*10^-3)//Surface tension in N/m
+
+//Calculations
+r1=(((4*3.14*r^3)/3)/((n*4*3.14)/3))^(1/3)//Radius of one small drop in m
+As=(n*4*3.14*r1^2)//Total surface of 500 drops in m^2
+as=4*3.14*r^2//Original surface area of the drop in m^2
+W=(s*(As-as))/10^-4//Work done in J*10^-4
+
+//Output
+printf('Energy required to break up a drop of a liquid is %3.1f*10^-4 J',W)
diff --git a/1958/CH5/EX5.8/Chapter5_example8.sce b/1958/CH5/EX5.8/Chapter5_example8.sce
new file mode 100755
index 000000000..9185b824a
--- /dev/null
+++ b/1958/CH5/EX5.8/Chapter5_example8.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+d=0.04//Inside diameter of garden hose in m
+D=0.01//Diamter of nozzle opening in m
+v1=0.6//speed of flow of water in the hose in m/s
+
+//calculations
+a=3.14*(d/2)^2//Area of hose in m^2
+A=3.14*(D/2)^2//Area of nozzle in m^2
+v2=(v1*a)/A//Speed of flow through the nozzle in m/s
+
+//Output
+printf('Speed of flow through the nozzle is %3.1f m/s',v2)
diff --git a/1958/CH6/EX6.1/Chapter6_example1.sce b/1958/CH6/EX6.1/Chapter6_example1.sce
new file mode 100755
index 000000000..a6da4d234
--- /dev/null
+++ b/1958/CH6/EX6.1/Chapter6_example1.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+a=(2.1*10^-2)//Vanderwaals constant a for neon gas in Nm^4/mol^2
+b=(1.71*10^-5)//Vanderwaals constant b for neon gas in m^3/mol
+R=8.314//Gas constant in J/mol.K
+
+//Calculations
+Tc=(8*a)/(27*b*R)//Critical temperature in K
+Vc=(3*b)/10^-5//Critical volume in m^3/mol * 10^-5
+Pc=(a/(27*b^2))/10^6//Critical pressure in N/m^2 * 10^6
+
+//Output
+printf('Critical temperature is %3.2f K \n Critical volume is %3.2f * 10^-5 m^3/mol \n Critical pressure is %3.3f * 10^6 N/m^2',Tc,Vc,Pc)
diff --git a/1958/CH6/EX6.2/Chapter6_example2.sce b/1958/CH6/EX6.2/Chapter6_example2.sce
new file mode 100755
index 000000000..4f2b9bdc1
--- /dev/null
+++ b/1958/CH6/EX6.2/Chapter6_example2.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+n=181*10^-6//Coefficient of viscosity of a gas in p
+v=3*10^4//Average speed of molecules in cm/s
+d=1.2929*10^-3//Density in g/cm^3
+
+//Calculations
+lemda=((3*n)/(d*v))/10^-6//Mean free path in cm*10^-6
+
+//Output
+printf('Mean free path is %3.0f * 10^-6 cm',lemda)
diff --git a/1958/CH6/EX6.3/Chapter6_example3.sce b/1958/CH6/EX6.3/Chapter6_example3.sce
new file mode 100755
index 000000000..d4b8d8cc3
--- /dev/null
+++ b/1958/CH6/EX6.3/Chapter6_example3.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+m=(28*1.66*10^-27)//Molecular mass of a gas in kg
+d=(3.48*10^-10)//Diameter in m
+k=(1.38*10^-23)//Boltzmans constant in J/K
+P=1.01*10^5//Pressure at STP in N/m^2
+T=273//Temperature at STP in K
+
+//Calculations
+D=((1/(P*3*d^2*sqrt(m)))*((2*k*T)/3.14)^(3/2))/10^-5//Diffusion coefficient of a gas at STP in m^2/s
+
+//Output
+printf('Diffusion coefficient of a gas at STP is %3.2f * 10^-5 m^2/s',D)
diff --git a/1958/CH6/EX6.4/Chapter6_example4.sce b/1958/CH6/EX6.4/Chapter6_example4.sce
new file mode 100755
index 000000000..47997586b
--- /dev/null
+++ b/1958/CH6/EX6.4/Chapter6_example4.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+m=(32*1.66*10^-27)//Molecular mass of a gas in kg
+d=(3.65*10^-10)//Diameter in m
+k=(1.38*10^-23)//Boltzmans constant in J/K
+P=1.01*10^5//Pressure at STP in N/m^2
+T=273//Temperature at STP in K
+
+//Calculations
+n=((1/(3.14*d^2))*sqrt((8*k*T*m)/(9*3.14)))/10^-5//Viscosity of gas at STP in N.s/m^2
+
+//Output
+printf('Viscosity of a gas at STP is %3.5f *10^-5 N.s/m^2',n)
diff --git a/1958/CH6/EX6.5/Chapter6_example5.sce b/1958/CH6/EX6.5/Chapter6_example5.sce
new file mode 100755
index 000000000..4fbea5164
--- /dev/null
+++ b/1958/CH6/EX6.5/Chapter6_example5.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//Input data
+v=460//Average speed of molecules in m/s
+l=(720*10^-10)//Mean free path in m
+Cv=21.06//Specific heat at constant volume in J/K.mol
+k=(1.38*10^-23)//Boltzmans constant in J/K
+P=1.01*10^5//Pressure at STP in N/m^2
+T=273//Temperature at STP in K
+N=6.022*10^23//Avagadro constant
+
+//Calculations
+K=((1/3)*(Cv/N)*(P/(k*T))*v*l)/10^-2//Thermal conductivity of the gas at STP in W/m.K *10^-2
+
+//Output
+printf('Thermal conductivity of the gas at STP is %3.5f *10^-2 W/m.K',K)
diff --git a/1958/CH7/EX7.1/Chapter7_example1.sce b/1958/CH7/EX7.1/Chapter7_example1.sce
new file mode 100755
index 000000000..b7929842e
--- /dev/null
+++ b/1958/CH7/EX7.1/Chapter7_example1.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//Input data
+f1=-12//Focal length of a converging lens in cm
+f2=25//Focal length of a diverging lens in cm
+d=8//Distance between the lens in cm
+
+//Calculations
+C=(1/f1)+(1/f2)+(d/(f1*f2))//Inverse of focal length in cm^-1
+D=(d/f2)+1//Constant value
+A=(d/f1)+1//Constant value
+O1F1=(-D/C)//Poistion of cardinal point in cm
+O2F2=(A/C)//Poistion of cardinal point in cm
+O1H1=(1-D)/C//Poistion of cardinal point in cm
+O2H2=(A-1)/C//Poistion of cardinal point in cm
+
+//Output
+printf('Position of cardinal points are O1F1 = %3.2f cm, O2F2 = %3.2f cm, O1H1 = %3.2f cm, O2H2 = %3.2f cm\n The system is in air, therfore, nodal points coincide with unit points',O1F1,O2F2,O1H1,O2H2)
diff --git a/1958/CH7/EX7.2/Chapter7_example2.sce b/1958/CH7/EX7.2/Chapter7_example2.sce
new file mode 100755
index 000000000..dbf7f519e
--- /dev/null
+++ b/1958/CH7/EX7.2/Chapter7_example2.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//Input data
+f=15//Focal length of achromatic doublet made up of crown and flint glasses in cm
+fl=[0.01506,0.02427]//Dispersive power of crown and flint glasses respectively
+
+//Calculations
+//Solving two equations
+//(1/f)=(1/f1)+(1/f2)
+//(f1/f2)=(-0.01506/0.02427)
+fx=(fl(1)/fl(2))//Ratio of focal lengths
+f2=(-(1/fx)+1)/(1/f)//Focal length of converging lens in cm
+f1=(-fx*f2)//Focal length of diverging lens in cm
+
+//Output
+printf('Focal length of converging lens is %3.4f cm \n Focal length of diverging lens is %3.1f cm',f2,f1)
diff --git a/1958/CH7/EX7.3/Chapter7_example3.sce b/1958/CH7/EX7.3/Chapter7_example3.sce
new file mode 100755
index 000000000..e59480c43
--- /dev/null
+++ b/1958/CH7/EX7.3/Chapter7_example3.sce
@@ -0,0 +1,19 @@
+clc
+clear
+//Input data
+f=20//Focal length in cm
+fl=[0.015,0.019]//Dispersive powers of crown and flint glasses respectively
+r=[1.495,1.53]//Refractive indices respectively
+
+//Calculations
+fx=-(fl(1)/fl(2))//Ratio of focal lengths
+//Solving two equations
+//(1/f)=(1/f1)+(1/f2)
+//(f1/f2)=(-0.015/0.019)
+f2=((1/fx)+1)/(1/f)//Focal length of converging lens in cm
+f1=(fx*f2)//Focal length of diverging lens in cm
+r2=(r(2)-1)*f2//Radius of curvature of convergent lens in cm
+r1=1/(((1/f1)/(r(1)-1))+(1/r2))//Radius of curvature of divergent lens in cm
+
+//Output
+printf('Radius of curvature of converging lens is %3.4f cm \n Radius of curvature of diverging lens is %3.3f cm',r2,r1)
diff --git a/1958/CH7/EX7.4/Chapter7_example4.sce b/1958/CH7/EX7.4/Chapter7_example4.sce
new file mode 100755
index 000000000..83546b64d
--- /dev/null
+++ b/1958/CH7/EX7.4/Chapter7_example4.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+r=1.5//Refractive index of the material of a thin lens
+f=-20//Focal length of the lens in cm
+rx=-6//Ratio of radii of curvature of lens
+
+//Calculations
+r1=1/((1/f)/((r-1)*(1-(1/rx))))//Radius of curvature of convergent lens in cm
+r2=(rx*r1)//Radius of curvature of divergent lens in cm
+
+//Output
+printf('Radii of curvature of lens are %3.2f cm and %i cm',r1,r2)
diff --git a/1958/CH9/EX9.1/Chapter9_example1.sce b/1958/CH9/EX9.1/Chapter9_example1.sce
new file mode 100755
index 000000000..9bd239044
--- /dev/null
+++ b/1958/CH9/EX9.1/Chapter9_example1.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+t=0.2//Thickness of film in micro m
+r=1.25//Refractive index of liquid
+w=[4000,5000]//Range of wavelength in Angstrom
+q=35//Angle observed in degrees
+
+//Calculations
+u=asind(sind(q)/r)//Angle of reflection in degrees
+w1=(2*t*10^-6*r*cosd(u))/10^-10//Wavelength in Angstrom
+w2=w1/2//Wavelength in Angstrom
+
+//Output
+printf('Wavelength absent in reflected light is %i Angstrom',w2)
diff --git a/1958/CH9/EX9.2/Chapter9_example2.sce b/1958/CH9/EX9.2/Chapter9_example2.sce
new file mode 100755
index 000000000..ce6b13ed7
--- /dev/null
+++ b/1958/CH9/EX9.2/Chapter9_example2.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+r=1.39//Refractive index of the film
+q=30//Angle observed in degrees
+w=[5125,5000]//Wavelengths of two consecutive dark bands in Angstrom
+
+//Calculations
+r1=asind(sind(q)/r)//Angle of reflection in degrees
+n=w(2)/(w(1)-w(2))//Constant value
+t=((n*w(1)*10^-8)/(2*r*cosd(r1)))/10^-4//Thickness of the film in cm *10^-4
+
+//Output
+printf('Thickness of the film is %3.4f *10^-4 cm',t)
diff --git a/1958/CH9/EX9.3/Chapter9_example3.sce b/1958/CH9/EX9.3/Chapter9_example3.sce
new file mode 100755
index 000000000..bbfe116fe
--- /dev/null
+++ b/1958/CH9/EX9.3/Chapter9_example3.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+r=1.4//Refractive index of the material
+w=5893//Wavelength of yellow light in Angstrom
+n=10//Number of bands
+w1=0.009//Width of band in m
+
+//Calculations
+b=asind((w*10^-8)/(2*r*n*w1))//Angle of wedge in degrees
+
+//Output
+printf('Angle of wedge is %3.4f degrees',b)
diff --git a/1958/CH9/EX9.4/Chapter9_example4.sce b/1958/CH9/EX9.4/Chapter9_example4.sce
new file mode 100755
index 000000000..8acf3d4ec
--- /dev/null
+++ b/1958/CH9/EX9.4/Chapter9_example4.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+r=1//Refractive index
+n=4//Number of bands
+w=6500//Wavelength in Angstrom
+
+//Calculations
+t=(((n+(1/2))*w*10^-8)/(2*r))/10^-4//Thickness of wedge shaped air film in cm *10^-4
+
+//Output
+printf('Thickness of wedge shaped air film is %3.4f *10^-4 cm',t)
diff --git a/1958/CH9/EX9.5/Chapter9_example5.sce b/1958/CH9/EX9.5/Chapter9_example5.sce
new file mode 100755
index 000000000..170dc9512
--- /dev/null
+++ b/1958/CH9/EX9.5/Chapter9_example5.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+d=0.5//Diameter of the ring in cm
+n=4//number of bands
+w=5893//Wavelength of light in Angstrom
+q=30//Angle at which light enters in degrees
+
+//Calculations
+R=((d^2*cosd(q))/(2*(2*n+1)*w*10^-8))//Radius of curvature of lens in cm
+
+//Output
+printf('Radius of curvature of lens is %3.1f cm',R)