diff options
Diffstat (limited to '1943/CH10')
-rwxr-xr-x | 1943/CH10/EX10.1/Ex10_1.sce | 22 | ||||
-rwxr-xr-x | 1943/CH10/EX10.10/Ex10_10.sce | 26 | ||||
-rwxr-xr-x | 1943/CH10/EX10.11/Ex10_11.sce | 25 | ||||
-rwxr-xr-x | 1943/CH10/EX10.12/Ex10_12.sce | 16 | ||||
-rwxr-xr-x | 1943/CH10/EX10.13/Ex10_13.sce | 21 | ||||
-rwxr-xr-x | 1943/CH10/EX10.14/Ex10_14.sce | 21 | ||||
-rwxr-xr-x | 1943/CH10/EX10.15/Ex10_15.sce | 17 | ||||
-rwxr-xr-x | 1943/CH10/EX10.16/Ex10_16.sce | 15 | ||||
-rwxr-xr-x | 1943/CH10/EX10.17/Ex10_17.sce | 23 | ||||
-rwxr-xr-x | 1943/CH10/EX10.18/Ex10_18.sce | 23 | ||||
-rwxr-xr-x | 1943/CH10/EX10.19/Ex10_19.sce | 24 | ||||
-rwxr-xr-x | 1943/CH10/EX10.2/Ex10_2.sce | 23 | ||||
-rwxr-xr-x | 1943/CH10/EX10.3/Ex10_3.sce | 21 | ||||
-rwxr-xr-x | 1943/CH10/EX10.4/Ex10_4.sce | 15 | ||||
-rwxr-xr-x | 1943/CH10/EX10.5/Ex10_5.sce | 19 | ||||
-rwxr-xr-x | 1943/CH10/EX10.6/Ex10_6.sce | 19 | ||||
-rwxr-xr-x | 1943/CH10/EX10.7/Ex10_7.sce | 27 | ||||
-rwxr-xr-x | 1943/CH10/EX10.8/Ex10_8.sce | 27 | ||||
-rwxr-xr-x | 1943/CH10/EX10.9/Ex10_9.sce | 40 |
19 files changed, 424 insertions, 0 deletions
diff --git a/1943/CH10/EX10.1/Ex10_1.sce b/1943/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..6852fb019 --- /dev/null +++ b/1943/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,22 @@ + +clc
+clear
+//Input data
+P=4000//Power in kW
+N=400//Speed in r.p.m
+h=200//Head in m
+e=90//Efficiency in percent
+d=1.5//Diameter in m
+vd=10//Percentage decrease in velocity
+a=165//Angle with which jet is deflected in degrees
+
+//Calculations
+V1=sqrt(2*9.81*h*(e/100))//Velocity in m/s
+Vb=(3.14*d*N)/60//Velocity in m/s
+nn=((2*(1-((e/100)*cosd(a)))*(V1-Vb)*Vb)/V1^2)*100//Efficiency in percent
+p=(P/(nn/100))//Power developed in kW
+pj=(p/2)//Power developed per jet in kW
+dx=sqrt((pj*8)/(3.14*V1^3))//Diameter of each jet in m
+
+//Output
+printf('(a) the efficiency of the runner is %3.2f percent \n (b) the diameter of each jet is %3.4f m',nn,dx)
diff --git a/1943/CH10/EX10.10/Ex10_10.sce b/1943/CH10/EX10.10/Ex10_10.sce new file mode 100755 index 000000000..2a17ef557 --- /dev/null +++ b/1943/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,26 @@ + +clc
+clear
+//Input data
+gh=35//Gross head in m
+md=2//Mean diameter in m
+N=145//Speed in rpm
+a=30//Angle in degrees
+oa=28//Outlet angle in degrees
+x=7//Percentage of gross head lost
+y=8//Reduction in relative velocity in percent
+
+//Calculations
+H=((100-x)/100)*gh//Net haed in m
+V1=sqrt(2*9.81*H)//Velocity in m/s
+Vb=(3.14*md*N)/60//Velocity in m/s
+b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Angle in degrees
+Vr1=((V1*sind(a))/sind(b1))//Velocity in m/s
+Vr2=((100-y)/100)*Vr1//Velocity in m/s
+Vw1=(V1*cosd(a))//Velocity in m/s
+Vw2=(Vb-(Vr2*cosd(oa)))//Velocity in m/s
+E=((Vb*(Vw1-Vw2))/9.81)//Workdone in kg.m/kg
+nb=(E/gh)*100//Hydraulic efficiency in percent
+
+//Output
+printf('Blade angle at inlet is %3.0f degrees \n Hydraulic efficiency is %3.0f percent',b1,nb)
diff --git a/1943/CH10/EX10.11/Ex10_11.sce b/1943/CH10/EX10.11/Ex10_11.sce new file mode 100755 index 000000000..d7a073ed2 --- /dev/null +++ b/1943/CH10/EX10.11/Ex10_11.sce @@ -0,0 +1,25 @@ + +clc
+clear
+//Input data
+P=10000//Power in kW
+h=12//Head in m
+Nr=2//Speed ratio
+Fr=0.65//Flow ratio
+x=0.3//Diameter of hub is 0.3 times the eternal diameter of the vane
+on=94//Overall efficiency in percent
+
+//Calculations
+Q=(P/(9.81*h*(on/100)))//Discharge in m^3/s
+Vr1=(Fr*sqrt(2*9.81*h))//Velocity in m/s
+Ab=(Q/Vr1)//Area of flow in m^2
+D=sqrt(((Ab*4)/3.14)/(1-x^2))//Diameter of runner in m
+Vb=(Nr*sqrt(2*9.81*h))//Velocity in m/s
+N=((Vb*60)/(3.14*D))//Speed in rpm
+f=50//Taking frequency as 50 Hz
+p=(120*50)/N//Number of poles
+N1=(120*f)/int(p)//Speed in rpm
+Ns=(N1*sqrt(P))/h^(5/4)//Specific speed
+
+//Output
+printf('(a) the speed is %3.1f rpm \n (b) the diameter of the runner is %3.2f m \n (c) the specific speed is %3.0f',N1,D,Ns)
diff --git a/1943/CH10/EX10.12/Ex10_12.sce b/1943/CH10/EX10.12/Ex10_12.sce new file mode 100755 index 000000000..bcb9c5b8f --- /dev/null +++ b/1943/CH10/EX10.12/Ex10_12.sce @@ -0,0 +1,16 @@ + +clc
+clear
+//Input data
+P=10000//Power in kW
+h=25//Head in m. In textbook it is given wrong as 2 m
+N=135//Speed in rpm
+h1=20//Head in m
+
+//Calculations
+Ns=((N*sqrt(P))/h^(5/4))//Specific speed
+N1=sqrt(h1/h)*N//Speed in rpm
+P2=P/(h/h1)^(3/2)//Power in kW
+
+//Output
+printf('Specific speed is %3.1f \n Normal speed is %3.1f rpm \n Output under a head of %i m is %3.0f kW',Ns,N1,h1,P2)
diff --git a/1943/CH10/EX10.13/Ex10_13.sce b/1943/CH10/EX10.13/Ex10_13.sce new file mode 100755 index 000000000..68eabc0cf --- /dev/null +++ b/1943/CH10/EX10.13/Ex10_13.sce @@ -0,0 +1,21 @@ + +clc
+clear
+//Input data
+Q=175//Discharge in m^3/s
+h=18//Head in meter
+N=150//Speed in rpm
+oe=82//Overall efficiency in percent
+Ns1=460//Maximum specific speed
+Ns2=350//Maximum specific speed
+d=1000//Density in kg/m^3
+
+//Calculations
+P=(d*Q*9.81*h*(oe/100)*10^-3)//power in kW
+P1=((Ns1*h^(5/4))/N)^2//Power in kW
+n1=P/P1//No.of turbains
+P2=((Ns2*h^(5/4))/N)^2//Power in kW
+n2=ceil(P/P2)//No.of turbains
+
+//Output
+printf('The number of turbines in \n (a) Francis turbine are%3.0f \n (b) Kaplan turbine are %i',n1,n2)
diff --git a/1943/CH10/EX10.14/Ex10_14.sce b/1943/CH10/EX10.14/Ex10_14.sce new file mode 100755 index 000000000..955b1ba8a --- /dev/null +++ b/1943/CH10/EX10.14/Ex10_14.sce @@ -0,0 +1,21 @@ + +clc
+clear
+//Input data
+Ns=210//Specific speed
+P=30//Power in MW
+N=180//Speed in rpm
+Q=0.6//Discharge in m^3/s
+h=4.5//Head in m
+e=88//Efficiency in percent
+d=1000//Density in kg/m^3
+
+//Calculations
+Pm=(d*Q*9.81*h*(e/100)*10^-3)//Power in kW
+Nm=(Ns*h^(5/4))/sqrt(Pm)//Speed in rpm
+Hp=((N*sqrt(P*1000))/Ns)^(4/5)//Head in m
+Dpm=(Nm/N)*sqrt(Hp/h)//Scale ratio
+Qp=(P*10^6)/(d*9.81*Hp*(e/100))//Discharge in m^3/s
+
+//Output
+printf('Speed is %3.0f rpm \n Power is %3.3f kW \n Scale ratio is %3.3f \n Flow through the turbine is %3.1f m^3/s',Nm,Pm,Dpm,Qp)
diff --git a/1943/CH10/EX10.15/Ex10_15.sce b/1943/CH10/EX10.15/Ex10_15.sce new file mode 100755 index 000000000..f1e755894 --- /dev/null +++ b/1943/CH10/EX10.15/Ex10_15.sce @@ -0,0 +1,17 @@ + +clc
+clear
+//Input data
+x=1/5//Scale model
+h=1.5//Head in m
+P=5//Power in kW
+N=450//Speed in rpm
+h1=30//Head in m
+
+//Calculations
+N1=(x*N)/sqrt(h/h1)//Speed in rpm
+Ns=(N*sqrt(P))/h^(5/4)//Specific speed
+P1=((Ns*h1^(5/4))/N1)^2//Power in kW
+
+//Output
+printf('Speed is %3.0f rpm \n Power is %3.0f kW',N1,P1)
diff --git a/1943/CH10/EX10.16/Ex10_16.sce b/1943/CH10/EX10.16/Ex10_16.sce new file mode 100755 index 000000000..cb34ba104 --- /dev/null +++ b/1943/CH10/EX10.16/Ex10_16.sce @@ -0,0 +1,15 @@ + +clc
+clear
+//Input data
+h=19//Head in m
+Q=3//Flow rate in m^3/s
+N=600//Speed in rpm
+h1=5//Head in m
+
+//Calculations
+N1=N/sqrt(h/h1)//Speed in rpm
+Q1=Q/sqrt(h/h1)//Discharge in m^3/s
+
+//Output
+printf('Speed of the turbine is %3.1f rpm \n Maximum flow rate is %3.1f m^3/s',N1,Q1)
diff --git a/1943/CH10/EX10.17/Ex10_17.sce b/1943/CH10/EX10.17/Ex10_17.sce new file mode 100755 index 000000000..c3dcd2909 --- /dev/null +++ b/1943/CH10/EX10.17/Ex10_17.sce @@ -0,0 +1,23 @@ + +clc
+clear
+//Input data
+Q=350//Discharge in m^3/s
+h=30//Head in m
+e=87//Turbine efficiency in percent
+f=50//Frequency in Hz
+p=24//Number of poles
+Ns1=300//Specific speed
+Ns2=820//Specific speed
+d=1000//Dnsity of water in kg/m^3
+
+//Calculations
+N=(120*f)/p//Speed in rpm
+P=d*Q*9.81*h*(e/100)*10^-3//Power in kW
+P1=((Ns1*h^(5/4))/N)^2//Power in kW
+n1=P/P1//No.of turbines
+P2=((Ns2*h^(5/4))/N)^2//Power in kW
+n2=ceil(P/P2)//No.of turbines
+
+//Output
+printf('Least number of machines required if using \n (a) Francis turbines are %3.0f \n (b) Kaplan turbines are %3.0f',n1,n2)
diff --git a/1943/CH10/EX10.18/Ex10_18.sce b/1943/CH10/EX10.18/Ex10_18.sce new file mode 100755 index 000000000..cb263a3a7 --- /dev/null +++ b/1943/CH10/EX10.18/Ex10_18.sce @@ -0,0 +1,23 @@ + +clc
+clear
+//Input data
+h=27//Head in m
+A=430//Area in sq.km
+R=150//Rainfall in cm/year
+pr=65//Percentage of rainfall utilised
+pe=95//Penstock efficiency in percent
+te=80//Turbine efficiency in percent
+ge=86//Generator efficiency in percent
+lf=0.45//Load factor
+d=1000//Density of water in kg/m^3
+
+//Calculations
+Q=A*10^6*(R/100)*(pr/100)//Discharge in m^3 per year
+Qs=(Q/(365*24*3600))//Quantity of water per second in m^3
+P=(pe/100)*(te/100)*(ge/100)*d*Qs*9.81*h*10^-3//Power in kW
+plc=(P/lf)//Peak load capacity in kW
+C=(plc/(2*(ge/100)))//Capacity of each unit in kW
+
+//Output
+printf('(a) Power developed is %3.0f kW \n (b) As the available head is low, Kaplan turbines are suggested.\n Two turbines each of 3000kW capacity may be installed.',P)
diff --git a/1943/CH10/EX10.19/Ex10_19.sce b/1943/CH10/EX10.19/Ex10_19.sce new file mode 100755 index 000000000..4b1d3f522 --- /dev/null +++ b/1943/CH10/EX10.19/Ex10_19.sce @@ -0,0 +1,24 @@ + +clc
+clear
+//Input data
+q=[30,25,20,0,010,50,80,100,110,65,45,30]//Mean discharge in millions of cu.m per month respectively
+h=90//Head in m
+n=86//Overall efficiency in percent
+
+//Calculations
+Qm=(q(1)+q(2)+q(3)+q(4)+q(5)+q(6)+q(7)+q(8)+q(9)+q(10)+q(11)+q(12))/12//Mean discharge in millions m^3/s
+Q=[30,30,25,25,20,20,0,0,10,10,50,50,80,80,100,100,110,110,65,65,45,45,30,30,0]//Discharge(million m^3/month) on y-axis
+y=[0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12]//Months on x-ais
+D=[110,100,90,80,70,60,50,40,30,25,20,10,0]//Discharge per month in million m^3
+pt=[8.3,16.7,25,25,25,33.3,41.7,50,66.7,75,83.3,91.7,100]//Percentage time
+Po=((Qm*10^6*9.81*h*(n/100))/(30*24*3600*1000))//Power developed in MW
+
+//Output
+subplot(121)
+plot(y,Q)//Graph Discharge(million m^3/month) vs Month
+xtitle('Discharge(million m^3/month) vs Month','Months','Discharge(million m^3/month)')
+subplot(122)
+plot(pt,D)//Graph percentage time vs Discharge(million m^3/month)
+xtitle('percentage time vs Discharge(million m^3/month)','percentage time','Discharge(million m^3/month)')
+printf('Power developed is %3.2f MW',Po)
diff --git a/1943/CH10/EX10.2/Ex10_2.sce b/1943/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..ed4e9740f --- /dev/null +++ b/1943/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,23 @@ + +clc
+clear
+//Input data
+P=6000//Power in kW
+h=300//Net head availabe in m
+N=550//Speed in r.p.m
+rd=(1/10)//Ratio of jet diameter to wheel diameter
+nh=0.85//Hydraulic efficiency
+Cv=0.98//Coefficient of velocity
+f=0.46//Speed ratio
+d=1000//Density in kg/m^3
+
+//Calculations
+V1=Cv*sqrt(2*9.81*h)//Velocity in m/s
+Vb=f*sqrt(2*9.81*h)//Velocity in m/s
+Q=((P*10^3)/(nh*d*9.81*h))//Discharge in m^3/s
+D=((Vb*60)/(3.14*N))//Diameter in m
+d=(D/10)//Diameter of jet in m
+n=(Q/((V1*(3.14/4)*d^2)))//Number of jets
+
+//Output
+printf('(a) the number of jets are%3.0f \n (b) diameter of each jet is %3.3f m \n (c) diameter of the wheel is %3.2f m \n (d) the quantity of water required is %3.1f m^3/s',n,d,D,Q)
diff --git a/1943/CH10/EX10.3/Ex10_3.sce b/1943/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..4c29ad4d6 --- /dev/null +++ b/1943/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,21 @@ + +clc
+clear
+//Input data
+P=10//Capacity in MW
+h=500//Head in m
+Ns=10//Specific speed of the turbine
+on=80//Overall efficiency in percent
+Cv=0.98//Coefficient of velocity
+x=0.46//Speed of the bucket wheel to the velocity of jet
+da=1000//Density in kg/m^3
+
+//Calculations
+N=(Ns*h^(5/4))/sqrt(P*10^3)//Speed in r.p.m
+V=(Cv*sqrt(2*9.81*h))//Velocity in m/s
+Vb=(x*V)//Speed of bucket wheel in m/s
+D=((60*Vb)/(3.14*N))//Diameter in m
+d=sqrt((P*10^6)/((on/100)*(3.14/4)*da*V*9.81*h))//Diameter in m
+
+//Output
+printf('Diameter of jet is %3.3f m \n Diameter of bucket wheel is %3.2f m',d,D)
diff --git a/1943/CH10/EX10.4/Ex10_4.sce b/1943/CH10/EX10.4/Ex10_4.sce new file mode 100755 index 000000000..312867c29 --- /dev/null +++ b/1943/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,15 @@ + +clc
+clear
+//Input data
+Cv=0.97//Coefficient of velocity
+f=0.45//Friction coefficient
+h=0.85//Head in m
+d=1000//Density in kg/m^3
+n=1//For a single jet turbine
+
+//Calculations
+Ns=((60/3.14)*(f*sqrt(2*9.8))*sqrt(n*(3.14/4)*Cv*sqrt(2*9.8)*9.8*h))//Specific speed in terms of d/D
+
+//Output
+printf('The specific speed of a single jet Pelton wheel is about %3.0f (d/D) where d and D represent the jet and bucket wheel diameters respectively',Ns)
diff --git a/1943/CH10/EX10.5/Ex10_5.sce b/1943/CH10/EX10.5/Ex10_5.sce new file mode 100755 index 000000000..ce36206d8 --- /dev/null +++ b/1943/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,19 @@ + +clc
+clear
+//Input data
+n=4//Number of jets
+d=60//Diameter of each jet in mm
+a=165//Angle in degrees
+v=45//Speed of the bucket wheel in m/s
+de=1000//Density in kg/m^3
+
+//Calculations
+v1=(2*v)//Jet velocity in m/s
+Q=(3.14/4)*(d/1000)^2*v1//Discharge in m^3/s
+P=(1-cosd(a))*(v1^2/4)*Q*de*10^-3//Power developed in kW
+P4=(P*4)//For four jets in kW
+nd=((1-cosd(a))/2)*100//Maximum efficiency in percent
+
+//Output
+printf('Velocity of the jet for maximum efficiency is %3.0f m/s \n Power developed is %i kW \n Hydraulic efficiency is %3.1f percent',v1,P4,nd)
diff --git a/1943/CH10/EX10.6/Ex10_6.sce b/1943/CH10/EX10.6/Ex10_6.sce new file mode 100755 index 000000000..ced9a9bdd --- /dev/null +++ b/1943/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,19 @@ + +clc
+clear
+//Input data
+v=20//Peripheral velocity in m/s
+vw=17//Velocity of whirl in m/s
+vr=2//Radial velocity in m/s
+Q=0.7//Flow in m^3/s
+hn=80//Hydraulic efficiency in percent
+d=1000//Density in kg/m^3
+
+//Calculations
+H=((vw*v)/(9.81*(hn/100)))//Head on the wheel in m
+P=(d*Q*9.81*H*(hn/100)*10^-3)//Power generated in kW
+al=180-atand(vr/vw)//Angle of guide vanes in degrees
+bl=atand(vr/(v-vw))//Inlet blade angle in degrees
+
+//Output
+printf('Head on the wheel is %3.1f m \n The power generated by the turbine is %3.0f kW \n Eit angle of guide vanes is %3.2f degrees and Inlet blade angle is %3.1f degrees',H,P,al,bl)
diff --git a/1943/CH10/EX10.7/Ex10_7.sce b/1943/CH10/EX10.7/Ex10_7.sce new file mode 100755 index 000000000..2d0d4a10b --- /dev/null +++ b/1943/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,27 @@ + +clc
+clear
+//Input data
+od=1.5//Outer diameter in m
+id=0.75//Inner diameter in m
+h=150//Head in m
+P=14000//Power in kW
+Ns=120//Specific speed
+vw2=0//Velocity in m/s
+a=(11+(20/60))//Angle in degrees
+hn=92//Hydraulic efficiency in percent
+
+//Calculations
+N=(Ns*h^(5/4))/sqrt(P)//Speed in rpm
+vb1=(3.14*od*N)/60//velocity in m/s
+vw1=(((hn/100)*9.81*h)/vb1)//velocity in m/s
+vf1=(tand(a)*vw1)//Velocity in m/s
+vf2=vf1//Velocity in m/s
+b1=atand(vf1/(vb1-vw1))//Angle in degrees
+b1x=(b1-int(b1))*60//For output
+vb2=(vb1/2)//Velocity in m/s
+b2=atand(vf1/(vb2-vw2))//Angle in degrees
+b2x=(b2-int(b2))*60//For output
+
+//Output
+printf('Inlet blade angle is %3.0f degrees %3.0f minutes \n Outlet blade angle is %3.0f degrees %3.0f minute',b1,b1x,b2,b2x)
diff --git a/1943/CH10/EX10.8/Ex10_8.sce b/1943/CH10/EX10.8/Ex10_8.sce new file mode 100755 index 000000000..e2a597ba7 --- /dev/null +++ b/1943/CH10/EX10.8/Ex10_8.sce @@ -0,0 +1,27 @@ + +clc
+clear
+//Input data
+h=70//net head in m
+N=700//speed in rpm
+o=85//over all efficiency in %
+P=350//shaft power in kW
+he=92//hydraulic efficiency in %
+fr=.22//flow ratio
+b=.1//breadth ratio
+s=2//outer diameter in terms of inner diametre
+//Calculations
+vf1=fr*sqrt(2*9.81*h)//velocity in m/s
+q=(P/(9.81*h*(o/100)))//discharge in m^3/s
+d1=sqrt(q/(.94*b*vf1*3.14))//diameter in metre
+b1=d1*b//breadth in metre
+d2=d1/2//diametre in metre
+vb1=(3.14*d1*N)/60//velocity in m/s
+vw1=((he/100)*9.81*h)/vb1//velcity in m/s
+a=atand(vf1/vw1)//angle in degrees
+bet=atand(vf1/(vw1-vb1))//angle in degrees
+vb2=(d2/d1)*vb1//velocity in m/s
+bet2=atand(vf1/vb2)//angle in degrees
+
+//Output
+printf('(a)the guide vane angle is %3.1f degrees \n (b)the runner vane angle at inlet is %3.1f degrees and outlet is %3.2f degrees \n (c)the diametres of the runner at inlet is %3.1f metre and outlet is %3.2f metre\n (d)the width of the wheel at inlet is %3.2f metre',a,bet,bet2,d1,d2,b1)
diff --git a/1943/CH10/EX10.9/Ex10_9.sce b/1943/CH10/EX10.9/Ex10_9.sce new file mode 100755 index 000000000..12ff71e5e --- /dev/null +++ b/1943/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,40 @@ + +clc
+clear
+//Input data
+n=4//Number of units
+P=70000//Power in kVA
+f=50//Frequency in Hz
+p=10//No.of pair of poles
+h=505//Gross head in m
+tn=94//Transmission efficiency in percent
+po=260//Power in MW
+e=91//Efficiency in percent
+nn=0.98//Nozzle efficiency
+Cv=0.98//Coefficient of velocity
+x=0.48//Vb=0.48 V
+dd=25//Nozzle diameter is 25% bigger than jet diameter
+a=165//Angle of buckets in degrees
+de=99.75//Discharge efficiency in percent
+
+//Calculations
+N=(120*f)/(p*2)//Synchronous speed in r.p.m
+nh=((tn/100)*h)//Net head in m
+pt=(po*10^3)/n//Power developed per turbine in kW
+ip=(pt/(e/100))//Input water power in kW
+Q=(ip/(9.81*nh))//Discharge in m^3/s
+Qj=(Q/n)//Discharge per jet in m^3/s
+V1=Cv*sqrt(2*9.81*nh)//Velocity in m/s
+d=sqrt((4/3.14)*(Qj/V1))//Diameter of jet in m
+nd=(1+(dd/100))*d//Nozzle tip diameter in m
+Vb=(x*V1)//Velocity in m/s
+D=((Vb*60)/(3.14*N))//Pitch circle diameter of the wheel in m
+Ns=((N*sqrt(po*10^3))/nh^(5/4))//Specific speed
+jr=(D/d)//Jet ratio
+nob=(jr/2)+15//Number of buckets
+nobb=ceil(nob)//Rounding off to next integer
+W=((V1-Vb)*(1-(nn*cosd(a)))*Vb)/9.81//Workdone per kg in kg.m/kg
+nth=((W/nh)*de)//Hydraulic efficiency in percent
+
+//Output
+printf('(a) the discharge of the turbine is %3.2f m^3/s \n (b) the jet diameter is %3.3f m \n (c) the nozzle tip diameter is %3.3f m \n (d) the pitch circle diameter of the wheel is %3.2f m \n (e) the specific speed is %3.2f \n (f) the number of buckets on the wheel are %3.0f \n (g) the workdone per kg of water on the wheel is %3.2f kg.m/kg \n (h) the hydraulic efficiency is %3.0f percent',Q,d,nd,D,Ns,nobb,W,nth)
|