diff options
Diffstat (limited to '1910/CH5/EX5.7')
-rwxr-xr-x | 1910/CH5/EX5.7/Chapter57.sce | 52 |
1 files changed, 52 insertions, 0 deletions
diff --git a/1910/CH5/EX5.7/Chapter57.sce b/1910/CH5/EX5.7/Chapter57.sce new file mode 100755 index 000000000..5ed652784 --- /dev/null +++ b/1910/CH5/EX5.7/Chapter57.sce @@ -0,0 +1,52 @@ +// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Introduction to heat transfer by S.K.Som, Chapter 5, Example 7")
+//A wall is exposed to nitrogen at one atmospheric pressure and temprature,Tinf=4°C.
+Tinf=4;
+//The wall is H=2.0m high and B=2.5m wide and is maintained at temprature,Ts=56°C
+Ts=56;
+H=2;
+B=2.5;
+A=H*B;//area is(A)
+//The average nusselt number NuHbar over the height of the plate is given by NuHbar=0.13*(Gr*Pr)^(1/3)
+//The properties of nitrogen at mean film temprature(Tf) is (56+4)/2=30°C are given as density(rho=1.142kg/m^3) ,conductivity(k=0.026W/(m*K)),
+//kinematic viscosity(nu=15.630*10^-6 m^2/s) ,Prandtl number(Pr=0.713)
+rho=1.142;
+k=0.026;
+nu=15.630*10^-6;
+Pr=0.713;
+Tf=30;
+//We first have to detrmine the value of Grashoff number,Gr.In consideration of nitrogen as an ideal gas,we can write
+//Beta(The volumetric coefficient of expansion)=1/T
+disp("Beta(The volumetric coefficient of expansion in K^-1 is")
+Beta=1/(273+Tf)
+//Now Gr=(g*Beta*(Ts-Tinf)*H^3)/nu^2
+g=9.81;//acceleration due to gravity
+disp("Grashoff number is")
+Gr=(g*Beta*(Ts-Tinf)*H^3)/nu^2
+disp("The average nusselt number is")
+NuHbar=0.13*(Gr*Pr)^(1/3)
+//hbar is the heat flux
+disp("Heat flux hbar in W/(m^2*°C)")
+hbar=NuHbar*k/H
+//Q is the heat loss from the plate
+disp("The heat loss from the plate in W is")
+Q=hbar*A*(Ts-Tinf)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|