summaryrefslogtreecommitdiff
path: root/1910/CH5/EX5.6/Chapter56.sce
diff options
context:
space:
mode:
Diffstat (limited to '1910/CH5/EX5.6/Chapter56.sce')
-rwxr-xr-x1910/CH5/EX5.6/Chapter56.sce58
1 files changed, 58 insertions, 0 deletions
diff --git a/1910/CH5/EX5.6/Chapter56.sce b/1910/CH5/EX5.6/Chapter56.sce
new file mode 100755
index 000000000..358bef46d
--- /dev/null
+++ b/1910/CH5/EX5.6/Chapter56.sce
@@ -0,0 +1,58 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Introduction to heat transfer by S.K.Som, Chapter 5, Example 6")
+//Air at 1atm pressure and temprature(Tin)=30°C enters a tube of 25mm diameter(D) with a velocity(U) of 10m/s
+D=0.025;//in metre
+U=10;
+Tin=30;
+//Tube is heated so that a constant heat flux(q) of 2kW/m^2 is maintained at the wall whose temprature is deltaT=20°C above the bulk mean air temprature through the length of tube
+//Let Tw-Tb=T
+q=2000;
+deltaT=20;
+//The length(L)= 2m
+L=2;
+//For air density(rho=1.2kg/m^3),specific heat(cp=1000J/(kg*K))
+rho=1.2;
+cp=1000;
+//From an energy balance of a control volume of air we get mdot*cp*(Tb+(dTb/dx)*deltax-Tb)=q*pi*D*deltax or (dTb/dx)=(q*pi*D)/(mdot*cp)
+//mass flow rate=mdot
+mdot=rho*%pi*D^2*U;
+//let (dTb/dx)=Y
+disp("(dTb/dx)in °C/m is")
+Y=(4*q*%pi*D)/(mdot*cp)
+//Tb2 is Exit bulk mean temprature
+disp("Therefore Exit bulk mean temprature Tb2 in °C is")
+Tb2=Tin+Y*2
+//Again we can write at any section of the tube hx*(Tw-Tb)=q or hx=q/(Tw-Tb)
+//hx is heat flux
+disp("Heat flux(hx) in W/(m^2*°C) is ")
+hx=q/(deltaT)
+//Since Tw-Tb remains the same,The heat transfer coefficient at all sections are the same
+//Now Overall Nusselt number,NuL=hx*D/k
+//The thermal conductivity of air at mean temprature of (30+83.4)/2=56.7°C is k=0.0285 W/(m*K)
+k=0.0285;
+disp("Overall Nusselt number is ")
+NuL=hx*D/k
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+