summaryrefslogtreecommitdiff
path: root/1898/CH3
diff options
context:
space:
mode:
Diffstat (limited to '1898/CH3')
-rwxr-xr-x1898/CH3/EX3.1/Ex3_1.sce36
-rwxr-xr-x1898/CH3/EX3.2/Ex3_2.sce29
-rwxr-xr-x1898/CH3/EX3.3/Ex3_3.sce34
-rwxr-xr-x1898/CH3/EX3.4/Ex3_4.sce40
-rwxr-xr-x1898/CH3/EX3.5/Ex3_5.sce45
-rwxr-xr-x1898/CH3/EX3.6/Ex3_6.sce34
6 files changed, 218 insertions, 0 deletions
diff --git a/1898/CH3/EX3.1/Ex3_1.sce b/1898/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..256b113ca
--- /dev/null
+++ b/1898/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,36 @@
+clear all; clc;
+
+disp("Scilab Code Ex 3.1 : ")
+
+//Given:
+offset = 0.2; //%
+a_x = 0.0016; //mm/mm
+a_y = 345; //Mpa
+
+//Refer to the given graph.
+
+//Calculations:
+
+//Modulus of Elasticity
+E = a_y/(a_x*10^3); //E is the slope in GPa.
+
+//Yield Strength:
+sigma_ys = 469; //Graphically, for a strain of 0.002mm/mm
+
+//Ultimate Stress:
+sigma_u = 745.2; //Mpa B is the peak of stress strain graph.
+
+//Fracture Stress:
+ep_f = 0.23; //mm/mm
+sigma_f = 621; //Mpa from the graph.
+
+//Display:
+
+printf("\n\nThe Modulus of Elasticity is = %10.1f GPa",E);
+printf("\nThe Yield Strength from the graph = %0.2f MPa",sigma_ys);
+printf("\nThe Ultimate Stress from the graph is =%10.1f MPa",sigma_u);
+printf("\nThe Fracture Stress from the graph is =%10.1f MPa",sigma_f);
+
+//-------------------------------------------------------------------------END----------------------------------------------------------------------------------
+
+
diff --git a/1898/CH3/EX3.2/Ex3_2.sce b/1898/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..76dd1b0fb
--- /dev/null
+++ b/1898/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,29 @@
+clear all; clc;
+
+disp("Scilab Code Ex 3.2 : ")
+
+//Given:
+stress_b = 600; //MPa
+strain_b = 0.023; //mm/mm
+stress_a = 450; //Mpa
+strain_a = 0.006; //mm/mm
+
+//Calculations:
+
+//Permanent Strain:
+E = stress_a/strain_a;
+strain_cd = stress_b/E; //The recovered elastic strain
+perm_strain = strain_b - strain_cd; //mm/mm
+
+//Modulus of Resilience:
+ur_initial = (0.5*stress_a*strain_a);//MJ/m^3
+ur_final = (0.5*stress_b*strain_cd); //MJ/m^3
+
+//Display:
+
+printf("\n\nThe Permanent Strain is =%10.5f mm/mm",perm_strain);
+printf("\nThe Initial Modulus of Resilience is = %0.2f MJ/mm^3",ur_initial);
+printf("\nThe Final Modulus of Resilience is = %0.2f MJ/mm^3",ur_final);
+
+
+//------------------------------------------------------------------------------END-------------------------------------------------------------------------------
diff --git a/1898/CH3/EX3.3/Ex3_3.sce b/1898/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..076c55e7f
--- /dev/null
+++ b/1898/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,34 @@
+clear all; clc;
+
+disp("Scilab Code Ex 3.3 : ")
+
+//Given:
+p = 10000; //N
+E_al = 70*(10^3); //MPa
+l_ab = 600; //mm
+d_ab = 20; //mm
+l_bc = 400; //mm
+d_bc = 15; //mm
+
+//Calculations:
+
+a_ab = (%pi/4)*(d_ab^2);// Area of AB
+a_bc = (%pi/4)*(d_bc^2);
+stress_ab = p/a_ab;// Stress = load/area
+stress_bc = p/a_bc;
+
+e_ab = stress_ab/E_al; //Hookes's Law. Elastic strain.
+e_bc = 0.045; //mm/mm . From the graph for stress_bc
+
+elongation = (l_ab*e_ab)+ (l_bc*e_bc);
+strain_rec = stress_bc/E_al; //Strain Recovery
+
+e_og = e_bc-strain_rec;// mm/mm
+rod_elong = e_og*l_bc;
+
+//Display:
+
+printf("\n\nThe elongation of the rod when load is applied =%10.1f mm",elongation);
+printf("\nThe permanent elongation of the rod when load is removed = %0.1f mm",rod_elong);
+
+//-------------------------------------------------------------------------END----------------------------------------------------------------------------------
diff --git a/1898/CH3/EX3.4/Ex3_4.sce b/1898/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..5caac57aa
--- /dev/null
+++ b/1898/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,40 @@
+clear all; clc;
+
+disp("Scilab Code Ex 3.4 : ")
+
+//Given:
+P = 80; //kN
+l_z = 1.5; //m
+l_y = 0.05;//m
+l_x = 0.1; //m
+
+//Calculations:
+A= l_x*l_y;
+normal_stress_z = (P*(10^3))/A; //Pa
+
+Est = 200; //GPa - from the tables.
+strain_z = (normal_stress_z)/(Est*(10^9)); // Strain = stress/modulus of elasticity
+
+axial_elong = strain_z*l_z; //elongation in the y direction
+
+nu_st = 0.32; //Poisson's Ratio - from the tables.
+strain_x = -(nu_st)*(strain_z); //strain in the x direction.
+strain_y = strain_x;
+
+//Elongations:
+delta_x = strain_x*l_x;
+delta_y = strain_y*l_y;
+
+//Display:
+
+printf("\n\nThe change in the length (z direction) = %10.8f m",axial_elong);
+printf("\nThe change in the cross section (x direction)= %10.8f m',delta_x);
+printf("\nThe change in the cross section (y direction)= %10.8f m',delta_y);
+
+printf("\n\nIn the standard form:")
+printf("\nThe change in the length (z direction) = %10.2f x10^6m",(axial_elong*10^6));
+printf("\nThe change in the cross section (x direction)= %10.2f x10^6m',(delta_x*10^6));
+printf("\nThe change in the cross section (y direction)= %10.2f x10^6m',(delta_y*10^6));
+
+//----------------------------------------------------------------------------END------------------------------------------------------------------------
+
diff --git a/1898/CH3/EX3.5/Ex3_5.sce b/1898/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..72a67ec2f
--- /dev/null
+++ b/1898/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,45 @@
+clear all; clc;
+
+disp("Scilab Code Ex 3.5 : ")
+
+//Given:
+//Refer to the graph of shear stress-strain of titanium alloy.
+x_A = 0.008; //rad - x co-ordinate of A
+y_A = 360; //MPa - y co-ordinate of A
+height = 50;//mm
+l = 75; //mm
+b = 100; //mm
+
+
+//Calculations:
+
+//Shear Modulus:
+G = y_A/x_A;
+
+//Proportional Limit:
+tou_pl = 360; //Mpa Point A
+
+//Ultimate Stresss:
+tou_u = 504; //MPa - Max shear stress at B
+
+//Maximum Elastic Displacement:
+tanA= x_A;// tan theta is approximated as theta.
+d = tanA*height;
+
+//Shear Force:
+A = l*b;
+V = tou_pl*A;
+
+//Display:
+
+
+printf("\n\nThe Shear Modulus = %10.2f MPa",G);
+printf("\nThe Proportional Limit = %10.2f Mpa",tou_pl);
+printf("\nThe Ultimate Shear Stress = %10.2f MPa ",tou_u);
+printf("\nThe Maximum Elastic Displacement = %10.2f mm",d);
+printf("\nThe Shear Force = %10.2f kN ",(V/1000));
+
+//------------------------------------------------------------------END---------------------------------------------------------------------------
+
+
+
diff --git a/1898/CH3/EX3.6/Ex3_6.sce b/1898/CH3/EX3.6/Ex3_6.sce
new file mode 100755
index 000000000..92867d3df
--- /dev/null
+++ b/1898/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,34 @@
+clear all; clc;
+
+disp("Scilab Code Ex 3.6 : ")
+
+//Given:
+d_o = 0.025; //m
+l_o =0.25; //m
+F =165; //kN
+delta = 1.2; //mm
+G_al = 26; //GPa
+sigma_y = 440; //MPa
+
+//Calculations:
+
+//Modulus of Elasticity:
+A = (%pi/4)*(d_o^2);
+avg_normal_stress = (F*10^3)/A;
+avg_normal_strain = delta/l_o;
+E_al = avg_normal_stress/ avg_normal_strain;
+
+E_al = E_al/10^6;
+
+//Contraction of Diameter:
+nu = (E_al/(2*G_al))-1;
+strain_lat = nu*(avg_normal_strain) ;
+d_contraction = strain_lat* d_o ;
+
+
+//Display:
+
+printf("\n\nThe Modulus of Elasticity = %10.1f GPa",E_al);
+printf("\nThe contraction in diameter due to the force = %10.4f mm",d_contraction);
+
+//------------------------------------------------------------------------------END----------------------------------------------------------------------------------------