diff options
Diffstat (limited to '1859/CH7')
31 files changed, 576 insertions, 0 deletions
diff --git a/1859/CH7/EX7.1/exa_7_1.sce b/1859/CH7/EX7.1/exa_7_1.sce new file mode 100755 index 000000000..f41d5467c --- /dev/null +++ b/1859/CH7/EX7.1/exa_7_1.sce @@ -0,0 +1,22 @@ +// Exa 7.1
+clc;
+clear;
+close;
+// Given data
+Z1= 100;// in Ω
+theta1= 30;// in °
+Z2= 50;// in Ω
+theta2= 0;// in °
+Z3= 200;// in Ω
+theta3= -90;// in °
+Z4= 100;// in Ω
+theta4= 30;// in °
+if Z1*Z4 = = Z2*Z3 then
+ disp("The first condition is satisfied")
+end
+if theta1+theta4 = = theta2+theta3 then
+ disp("The second condiiton is also satisfied, So it is possible to balance the bridge under the given condition")
+else
+ disp("The second condition is not satisfied.")
+ disp("So balance is not possible under given condition")
+end
diff --git a/1859/CH7/EX7.10/exa_7_10.sce b/1859/CH7/EX7.10/exa_7_10.sce new file mode 100755 index 000000000..4f828541d --- /dev/null +++ b/1859/CH7/EX7.10/exa_7_10.sce @@ -0,0 +1,24 @@ +// Exa 7.10
+clc;
+clear;
+close;
+format('v',7);
+// Given data
+f=25;//in kHz
+f=f*10^3;// in Hz
+R1=3.1*10^3;//in ohm
+R2=25*10^3;//in ohm
+R4=100*10^3;//in ohm
+C1=5.2*10^-6;//in F
+omega= 2*%pi*f;
+// From C3/C1= R2/R4-R1/R3
+// C3= C1*(R2/R4-R1/R3) (i)
+// and omega= 1/sqrt(R1*R3*C1*C3)
+// R3= 1/(omega^2*R1*C1*C3), putting this value in (i)
+C3= C1*R2/(R4*(1+R1^2*C1^2*omega^2));// in F
+disp(C3*10^12,"Equivalent capacitance in µµF")
+R3= 1/(omega^2*R1*C1*C3);// in ohm
+disp(R3*10^-3,"Equivalent parallel resistance in kohm")
+
+
+// Note Evaluating the value of C3 in the book is wrong.
diff --git a/1859/CH7/EX7.11/exa_7_11.sce b/1859/CH7/EX7.11/exa_7_11.sce new file mode 100755 index 000000000..c53a05ffc --- /dev/null +++ b/1859/CH7/EX7.11/exa_7_11.sce @@ -0,0 +1,24 @@ +// Exa 7.11
+clc;
+clear;
+close;
+// Given data
+format('v',9);
+R2= 5;// in ohm
+R3= 2000;// in ohm
+R4= 2950;// in ohm
+C2= 0.5;// in miu F
+C2=C2*10^-6;// in F
+r2=0.4;// in ohm
+f=450;// in Hz
+omega= 2*%pi*f;
+// Under Balace Condition Z1*Z4=Z2*Z3
+// [r1+1/(j*omega*C1)]*R4= [r2+R2+1/(j*omega*C2)]*R3
+// Equating the real parts we have, r1*R4= (r2+R2)*R3
+r1= (r2+R2)*R3/R4;// in ohm
+disp(r1,"Value of r1 in ohm")
+// Equating imaginary parts we have R4/(j*omega*C1)= R3/(j*omega*C2)
+C1= R4/R3*C2;// in F
+disp(C1*10^6,"Value of C1 in micro F");
+Tan_toh= omega*C1*r1;
+disp(Tan_toh,"Dissipation Factor is")
diff --git a/1859/CH7/EX7.12/exa_7_12.sce b/1859/CH7/EX7.12/exa_7_12.sce new file mode 100755 index 000000000..fba0d8f32 --- /dev/null +++ b/1859/CH7/EX7.12/exa_7_12.sce @@ -0,0 +1,14 @@ +// Exa 7.12
+clc;
+clear;
+close;
+// Given data
+L1= 52.6;// in mH
+r1= 28.5;// in ohm
+R2= 1.68;// in ohm
+R3= 80;// resistance in ohm
+R4= 80;// resistance in ohm
+r2= r1*R3/R4-R2;// in ohm
+disp(r2,"Resistance of coil in ohm")
+L2=L1*R3/R4;// in mH
+disp(L2,"Inductance of coil in mH");
diff --git a/1859/CH7/EX7.13/exa_7_13.sce b/1859/CH7/EX7.13/exa_7_13.sce new file mode 100755 index 000000000..2a2189b68 --- /dev/null +++ b/1859/CH7/EX7.13/exa_7_13.sce @@ -0,0 +1,14 @@ +// Exa 7.13
+clc;
+clear;
+close;
+// Given data
+L= 47.8;// in mH
+R= 1.36;// in ohm
+R2= 100;// in ohm
+R3= 32.7;//in ohm
+R4= 100;//in ohm
+R1= R2*R3/R4-R;// in ohm
+disp(R1,"Resistance of coil in ohm");
+L1= R2/R4*L;// in mH
+disp(L1,"Inductance of coil in mH")
diff --git a/1859/CH7/EX7.14/exa_7_14.sce b/1859/CH7/EX7.14/exa_7_14.sce new file mode 100755 index 000000000..136756ad2 --- /dev/null +++ b/1859/CH7/EX7.14/exa_7_14.sce @@ -0,0 +1,15 @@ +// Exa 7.14
+clc;
+clear;
+close;
+// Given data
+R2= 1000;// in ohm
+R3= 1000;//in ohm
+R4= 1000;//in ohm
+C4= 0.5;// in miu F
+C4= C4*10^-6;// in F
+R1= R2*R3/R4;// in ohm
+disp(R1,"Resistance of inductor in ohm")
+ L1= C4*R2*R3;// in H
+ disp(L1,"Inductance of inductor in H")
+
diff --git a/1859/CH7/EX7.15/exa_7_15.sce b/1859/CH7/EX7.15/exa_7_15.sce new file mode 100755 index 000000000..6ac28acc3 --- /dev/null +++ b/1859/CH7/EX7.15/exa_7_15.sce @@ -0,0 +1,16 @@ +// Exa 7.15
+clc;
+clear;
+close;
+// Given data
+r= 469;// in ohm
+R2= 1000;// in ohm
+R3= 218;//in ohm
+R4= 1000;//in ohm
+C= 10;// in miu F
+C= C*10^-6;// in F
+R1= R2*R3/R4;// in ohm
+disp(R1,"Resistance of inductor in ohm")
+ L1= C*R2/R4*(r*(R3+R4)+R3*R4);// in H
+ disp(L1,"Inductance of inductor in H")
+
diff --git a/1859/CH7/EX7.16/exa_7_16.sce b/1859/CH7/EX7.16/exa_7_16.sce new file mode 100755 index 000000000..0c3d87d37 --- /dev/null +++ b/1859/CH7/EX7.16/exa_7_16.sce @@ -0,0 +1,16 @@ +// Exa 7.16
+clc;
+clear;
+close;
+// Given data
+r= 500;// in ohm
+R2= 400;// in ohm
+R3= 400;//in ohm
+R4= 400;//in ohm
+C= 2;// in miu F
+C= C*10^-6;// in F
+R= R2*R3/R4;// in ohm
+disp(R,"Resistance of AB in ohm")
+ L= C*R2/R4*(r*(R3+R4)+R3*R4);// in H
+ disp(L,"Inductance of AB in H")
+
diff --git a/1859/CH7/EX7.17/exa_7_17.sce b/1859/CH7/EX7.17/exa_7_17.sce new file mode 100755 index 000000000..e325c86c0 --- /dev/null +++ b/1859/CH7/EX7.17/exa_7_17.sce @@ -0,0 +1,16 @@ +// Exa 7.17
+clc;
+clear;
+close;
+// Given data
+r= 100;// in ohm
+R2= 1000;// in ohm
+R3= 500;//in ohm
+R4= 1000;//in ohm
+C= 3;// in micro F
+C= C*10^-6;// in F
+Rx= R2*R3/R4;// in ohm
+disp(Rx,"Value of Rx in ohm")
+ Lx= C*R2/R4*(r*(R3+R4)+R3*R4);// in H
+ disp(Lx,"Value of Lx in H")
+
diff --git a/1859/CH7/EX7.18/exa_7_18.sce b/1859/CH7/EX7.18/exa_7_18.sce new file mode 100755 index 000000000..e3da8cb18 --- /dev/null +++ b/1859/CH7/EX7.18/exa_7_18.sce @@ -0,0 +1,16 @@ +// Exa 7.18
+clc;
+clear;
+close;
+// Given data
+R2= 1000;// in ohm
+R3= 16800;//in ohm
+R4= 833;//in ohm
+C4= 0.38;// in miu F
+C4= C4*10^-6;// in F
+f= 50;// in Hz
+omega=2*%pi*f;
+L1= R2*R3*C4/(1+(omega*C4*R4)^2);// in H
+disp(L1,"Unknown inductance in H");
+R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4)^2);// in ohm
+disp(R1,"Unknown resistance in ohm")
diff --git a/1859/CH7/EX7.19/exa_7_19.sce b/1859/CH7/EX7.19/exa_7_19.sce new file mode 100755 index 000000000..ad616d953 --- /dev/null +++ b/1859/CH7/EX7.19/exa_7_19.sce @@ -0,0 +1,19 @@ +// Exa 7.19
+clc;
+clear;
+close;
+// Given data
+R1= 500;//in ohm
+R2= 1000;// in ohm
+R3= R2;//in ohm
+L1= 0.18;// in H
+f= 5000/(2*%pi);// in Hz
+omega= 2*%pi*f;
+// L1= R2*R3*C4/(1+(omega*C4*R4)^2) (i)
+// and R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4)^2) or R1= omega^2*R4*C4*L1
+R4C4= R1/(omega^2*L1);
+// From eq (i)
+C4= L1*(1+(omega*R4C4)^2)/(R2*R3);// in F
+disp(C4*10^6,"Value of C in micro F");
+R4= R4C4/C4;// in ohm
+disp(round(R4),"Value of R4 in ohm")
diff --git a/1859/CH7/EX7.2/exa_7_2.sce b/1859/CH7/EX7.2/exa_7_2.sce new file mode 100755 index 000000000..8bcba1c7b --- /dev/null +++ b/1859/CH7/EX7.2/exa_7_2.sce @@ -0,0 +1,34 @@ +// Exa 7.2
+clc;
+clear;
+close;
+// Given data
+Z1= 1000;// in Ω
+theta1= -90;// in °
+Z2= 500;// in Ω
+theta2= 0;// in °
+Z3= 1000;// in Ω
+theta3= 0;// in °
+R4= 100;// in Ω
+XL4= 500;// in Ω
+Z4=abs(R4+%i*XL4);// in °
+theta4= atand(imag(R4+%i*XL4),real(R4+%i*XL4));// in °
+if theta1+theta4 = = theta2+theta3 then
+ disp("The first condiiton is satisfied.")
+else
+disp("Balance is not possible with given configuration")
+end
+// 1/Z1=1/R1+j*omega*C1 (i)
+// According to figure 1/Z1= R4/(Z2*Z3)+%i*XL4/(Z2*Z3) (ii)
+// Comparing real and j-components of Eqn (i) and (ii)
+R1= Z2*Z3/R4;// in Ω
+OmegaC1= Z2*Z3/XL4;// in Ω
+disp("Since X_C1 is already equal to "+string(OmegaC1)+" Ω, the bridge can be balanced simply by placing a")
+disp("resistance of "+string(R1)+" Ω across the capacitor arm 1")
+// Z3= R3-j*X_C3 (iii)
+Z3= Z1*expm(%i*theta1*%pi/180)*Z4*expm(%i*theta4*%pi/180)/(Z2*expm(%i*theta2*%pi/180));// (iv)
+// Comparing real and j-components of Eqn (iii) and (iv)
+R3= 1000;// in Ω
+XC3= 200;// in Ω
+disp("Since R3 is already of "+string(R3)+" Ω, the bridge can be balanced simply by adding a")
+disp("capacitor of reactance X_C3 of "+string(XC3)+" Ω in series with the resistor R3 in arm 3.")
diff --git a/1859/CH7/EX7.20/exa_7_20.sce b/1859/CH7/EX7.20/exa_7_20.sce new file mode 100755 index 000000000..c05fb3664 --- /dev/null +++ b/1859/CH7/EX7.20/exa_7_20.sce @@ -0,0 +1,14 @@ +// Exa 7.20
+clc;
+clear;
+close;
+// Given data
+R2= 1000;//in ohm
+R3= 10000;// in ohm
+R4= 2000;//in ohm
+C4= 1*10^-6;// in F
+omega= 3000;// radians/sec
+L1= R2*R3*C4/(1+(omega*C4*R4)^2);// in H
+disp(L1,"Equivalent inductance of the network in H")
+R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4)^2);// in ohm
+disp(R1*10^-3,"Equivalent resistance of the network in kohm")
diff --git a/1859/CH7/EX7.21/exa_7_21.sce b/1859/CH7/EX7.21/exa_7_21.sce new file mode 100755 index 000000000..c3a584e32 --- /dev/null +++ b/1859/CH7/EX7.21/exa_7_21.sce @@ -0,0 +1,19 @@ +// Exa 7.21
+clc;
+clear;
+close;
+// Given data
+R2= 2410;//in ohm
+R3= 750;// in ohm
+R4= 64.5;//in ohm
+C4= 0.35*10^-6;// in F
+r4= 0.4;// series resistance of capacitor in ohm
+f=500;/// in Hz
+omega= 2*%pi*f;// radians/sec
+R4= R4+r4;// in ohm
+R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4)^2);// in ohm
+disp(R1,"Resistance of the choke coil in ohm")
+L1= R2*R3*C4/(1+(omega*C4*R4)^2);// in H
+disp(L1,"Inductance of the choke coil in H")
+
+// Note: Calculation of finding the value of L1 in the book is wrong
diff --git a/1859/CH7/EX7.22/exa_7_22.sce b/1859/CH7/EX7.22/exa_7_22.sce new file mode 100755 index 000000000..6ec4be28b --- /dev/null +++ b/1859/CH7/EX7.22/exa_7_22.sce @@ -0,0 +1,20 @@ +// Exa 7.22
+clc;
+clear;
+close;
+// Given data
+R2= 834;// in Ω
+R3= 100;// in Ω
+C2= 0.124;// in µF
+C2= C2*10^-6;// in F
+C4= 0.1;// in µF
+C4= C4*10^-6;// in F
+L1= R2*R3*C4;// in H
+f= 2;// in kHz
+f= f*10^3;// in kHz
+disp(L1*10^3,"The value of L1 in mH is : ")
+R1= R3*C4/C2;// in Ω
+disp(R1,"The value of R1 in Ω is : ")
+Z= R1+%i*2*%pi*f*L1;// in Ω
+disp(abs(Z),"The magnitude of effective impedence in Ω is : ")
+disp(atand(imag(Z),real(Z)),"The angle of effective impedence in ° is : ")
diff --git a/1859/CH7/EX7.23/exa_7_23.sce b/1859/CH7/EX7.23/exa_7_23.sce new file mode 100755 index 000000000..29b0eba9f --- /dev/null +++ b/1859/CH7/EX7.23/exa_7_23.sce @@ -0,0 +1,17 @@ +// Exa 7.23
+clc;
+clear;
+close;
+// Given data
+fr= 2;// in MHz
+fr=fr*10^6;// in Hz
+C=230+8;// in pF
+C=C*10^-12;// in F
+// Formula fr= 1/(2*%pi*sqrt(L*C))
+L= 1/((2*%pi*fr)^2*C);// in H
+disp(L*10^6,"Value of L in µH")
+// From the first set of data
+fr= 1;// in MHz
+fr=fr*10^6;// in Hz\
+C= 1/((2*%pi*fr)^2*L);// in F
+disp(C*10^12,"Value of C in pF")
diff --git a/1859/CH7/EX7.24/exa_7_24.sce b/1859/CH7/EX7.24/exa_7_24.sce new file mode 100755 index 000000000..57b9dbc3b --- /dev/null +++ b/1859/CH7/EX7.24/exa_7_24.sce @@ -0,0 +1,20 @@ +// Exa 7.24
+clc;
+clear;
+close;
+// Given data
+C1= 208;// in pF
+C1=C1*10^-12;// in F
+Q1= 80;
+C2= 184;// in pF
+C2=C2*10^-12;// in F
+Q2= 50;
+f=165;// in kHz
+f=f*10^3;// in Hz
+omega= 2*%pi*f;// in radians/sec
+// Part (i)
+Rm= 1/omega*(1/(C2*Q2)-1/(C1*Q1));// in ohm
+disp(Rm,"Resistive component of unknown impedence in ohm")
+// Part(ii)
+Xm= 1/omega*(1/C2-1/C1);// in ohm
+disp(round(Xm),"Reactive component of unknown impedence in ohm")
diff --git a/1859/CH7/EX7.25/exa_7_25.sce b/1859/CH7/EX7.25/exa_7_25.sce new file mode 100755 index 000000000..e1a84cfb0 --- /dev/null +++ b/1859/CH7/EX7.25/exa_7_25.sce @@ -0,0 +1,16 @@ +// Exa 7.25
+clc;
+clear;
+close;
+// Given data
+C1= 160*10^-12;// in F
+C2= 36*10^-12;// in F
+f1=250;// in kHz
+f1=f1*10^3;// in Hz
+f2=500;// in kHz
+f2=f2*10^3;// in Hz
+Cd= (C1-4*C2)/3;// in F
+disp(Cd*10^12,"Self Capacitance of the coil in µµF")
+// Formula f1= 1/(2*%pi*sqrt(L*(C1+Cd)))
+L= 1/((2*%pi*f1)^2*(C1+Cd));// in H
+disp(round(L*10^6),"Self inductance of the coil in µH");
diff --git a/1859/CH7/EX7.26/exa_7_26.sce b/1859/CH7/EX7.26/exa_7_26.sce new file mode 100755 index 000000000..b49c45695 --- /dev/null +++ b/1859/CH7/EX7.26/exa_7_26.sce @@ -0,0 +1,13 @@ +// Exa 7.26
+clc;
+clear;
+close;
+// Given data
+C1= 251*10^-12;// in F
+C2= 50*10^-12;// in F
+f1=3;// in MHz
+f1=f1*10^6;// in Hz
+f2=6;// in MHz
+f2=f2*10^6;// in Hz
+Cd= (C1-4*C2)/3;// in F
+disp(Cd*10^12,"Self Capacitance of the coil in pF")
diff --git a/1859/CH7/EX7.27/exa_7_27.sce b/1859/CH7/EX7.27/exa_7_27.sce new file mode 100755 index 000000000..31cc14758 --- /dev/null +++ b/1859/CH7/EX7.27/exa_7_27.sce @@ -0,0 +1,15 @@ +// Exa 7.27
+clc;
+clear;
+close;
+// Given data
+C1= 1530;// in pF
+C2= 162;// in pF
+f1=1;// in MHz
+f1=f1*10^6;// in Hz
+f2=3;// in MHz
+f2=f2*10^6;// in Hz
+// f1= 1/(2*%pi*sqrt(L*(C1+Cd)))
+// f1= 1/(2*%pi*sqrt(L*(C2+Cd))) and f2= 3*f1 so
+Cd= (C1-9*C2)/8;// in pF
+disp(Cd,"Self capacitance of the coil in pF")
diff --git a/1859/CH7/EX7.28/exa_7_28.sce b/1859/CH7/EX7.28/exa_7_28.sce new file mode 100755 index 000000000..bed76858e --- /dev/null +++ b/1859/CH7/EX7.28/exa_7_28.sce @@ -0,0 +1,17 @@ +// Exa 7.28
+clc;
+clear;
+close;
+// Given data
+f= 450;// in kHz
+f=f*10^3;// in Hz
+C=250;// in pF
+C=C*10^-12;// in F
+Rsh= 0.75;// in ohm
+Q= 105;
+omega= 2*%pi*f;// in radians/sec
+// Formula f= 1/(2*%pi*sqrt(L*C))
+L= 1/((2*%pi*f)^2*C);// in H
+disp(round(L*10^6),"Inductance of the coil in µH")
+R= omega*L/Q-Rsh;// in ohm
+disp(R,"Resistance of the coil in ohm")
diff --git a/1859/CH7/EX7.29/exa_7_29.sce b/1859/CH7/EX7.29/exa_7_29.sce new file mode 100755 index 000000000..4c67ee090 --- /dev/null +++ b/1859/CH7/EX7.29/exa_7_29.sce @@ -0,0 +1,16 @@ +// Exa 7.29
+clc;
+clear;
+close;
+// Given data
+f= 500;// in kHz
+f=f*10^3;// in Hz
+C=120;// in pF
+C=C*10^-12;// in F
+R= 5;// in ohm
+r=0.02;// resistance used across the oscillatory circuit in ohm
+omega= 2*%pi*f;// in radians/sec
+Q_True= 1/(omega*C*R);
+Q_indicated= 1/(omega*C*(R+r));
+PerError= (Q_True-Q_indicated)*100/Q_True;// in %
+disp(PerError,"Percentage Error is ")
diff --git a/1859/CH7/EX7.3/exa_7_3.sce b/1859/CH7/EX7.3/exa_7_3.sce new file mode 100755 index 000000000..9923e81cb --- /dev/null +++ b/1859/CH7/EX7.3/exa_7_3.sce @@ -0,0 +1,11 @@ +// Exa 7.3
+clc;
+clear;
+close;
+// Given data
+C2= 0.2;// in micro F
+Ratio21= 10/1;// resistance ratio R2/R1
+C1= C2*Ratio21;// in micro F
+Ratio21_desh= 1/10;
+C1_desh= C2*Ratio21_desh;// in micro F
+disp("So range of measurement of unknown capacitance is "+string(C1_desh)+" micro F to "+string(C1)+" micro F")
diff --git a/1859/CH7/EX7.30/exa_7_30.sce b/1859/CH7/EX7.30/exa_7_30.sce new file mode 100755 index 000000000..8bac2cf4b --- /dev/null +++ b/1859/CH7/EX7.30/exa_7_30.sce @@ -0,0 +1,16 @@ +// Exa 7.30
+clc;
+clear;
+close;
+// Given data
+f1= 800;// in kHz
+f1=f1*10^3;// in Hz
+f2= 2.5;// in MHz
+f2=f2*10^6;// in Hz
+C1=95;// in pF
+C1=C1*10^-12;// in F
+// L= 1/(omega1^2*(C1+Cd)) (i)
+// L= 1/(omega2^2*Cd) (ii)
+// From eq(i) and eq(ii)
+Cd= f1^2*C1/(f2^2-f1^2);// in F
+disp(Cd*10^12,"Self capacitance of the radio coil in pF");
diff --git a/1859/CH7/EX7.31/exa_7_31.sce b/1859/CH7/EX7.31/exa_7_31.sce new file mode 100755 index 000000000..a8d7b8a3b --- /dev/null +++ b/1859/CH7/EX7.31/exa_7_31.sce @@ -0,0 +1,30 @@ +// Exa 7.31
+clc;
+clear;
+close;
+// Given data
+f1= 1;// in MHz
+f1=f1*10^6;// in Hz
+f2= 2;// in MHz
+f2=f2*10^6;// in Hz
+C1=480;// in pF
+C1=C1*10^-12;// in F
+C2=90;// in pF
+C2=C2*10^-12;// in F
+R=10;// in ohm
+omega1= 2*%pi*f1;// in radians/sec
+omega2= 2*%pi*f2;// in radians/sec
+
+// Part (i)
+Cd= (C1-4*C2)/3;// in F
+disp(Cd*10^12,"Self capacitance of the coil in pF")
+
+// Part(ii)
+Q_indicated1= 1/(omega1*(C1+Cd)*R);
+disp(Q_indicated1,"Indicated or effective Q for first measurement")
+Q_True1= 1/(omega1*C1*R);
+disp(Q_True1,"True Q for first measurement is ");
+Q_indicated2= 1/(omega2*(C2+Cd)*R);
+disp(Q_indicated2,"Indicated or effective Q for second measurement")
+Q_True2= 1/(omega2*C2*R);
+disp(Q_True2,"True Q for second measurement is ");
diff --git a/1859/CH7/EX7.4/exa_7_4.sce b/1859/CH7/EX7.4/exa_7_4.sce new file mode 100755 index 000000000..a2b6a9a67 --- /dev/null +++ b/1859/CH7/EX7.4/exa_7_4.sce @@ -0,0 +1,23 @@ +// Exa 7.4
+clc;
+clear;
+close;
+// Given data
+R2= 5;// in ohm
+R3= 2000;// in ohm
+R4= 2950;// in ohm
+C2= 0.5;// in micro F
+C2=C2*10^-6;// in F
+r2=0.4;// in ohm
+f=450;// in Hz
+omega= 2*%pi*f;
+// Under Balace Condition Z1*Z4=Z2*Z3
+// [r1+1/(j*omega*C1)]*R4= [r2+R2+1/(j*omega*C2)]*R3
+// Equating the real parts we have, r1*R4= (r2+R2)*R3
+r1= (r2+R2)*R3/R4;// in ohm
+disp(r1,"Value of r1 in ohm")
+// Equating imaginary parts we have R4/(j*omega*C1)= R3/(j*omega*C2)
+C1= R4/R3*C2;// in F
+disp(C1*10^6,"Value of C1 in micro F");
+Tan_toh= omega*C1*r1;
+disp(Tan_toh,"Dissipation Factor is")
diff --git a/1859/CH7/EX7.5/exa_7_5.sce b/1859/CH7/EX7.5/exa_7_5.sce new file mode 100755 index 000000000..c21c0b0cb --- /dev/null +++ b/1859/CH7/EX7.5/exa_7_5.sce @@ -0,0 +1,23 @@ +// Exa 7.5
+clc;
+clear;
+close;
+// Given data
+f=1000;//in Hz
+R1=1000;//in ohm
+R2=1000;// in ohm
+R3=2000;//in ohm
+R4=2000;//in ohm
+C1=1*10^-6;//in F
+r1= 10;// in ohm
+omega=2*%pi*f;
+C2=C1*R1/R2;//in F
+disp(C2*10^6,"Unknown capacitance in micro F ");
+
+r2=(R2*(R3+r1)-R1*R4)/R1;//in ohm
+del_1=omega*r1*C1;//in radian
+del_1=del_1*180/%pi;// in °
+disp(del_1,"Phase angle error1 in degree");
+del_2=omega*r2*C2;//in radian
+del_2=del_2*180/%pi;// in degree
+disp(del_2, "Phase angle error2 in degree");
diff --git a/1859/CH7/EX7.6/exa_7_6.sce b/1859/CH7/EX7.6/exa_7_6.sce new file mode 100755 index 000000000..b635976b2 --- /dev/null +++ b/1859/CH7/EX7.6/exa_7_6.sce @@ -0,0 +1,18 @@ +// Exa 7.6
+clc;
+clear;
+close;
+// Given data
+f=500;//in Hz
+R2=4.8;//in ohm
+R3=2*10^3;// in ohm
+R4=2.85*10^3;//in ohm
+C2=0.5*10^-6;//in F
+r2= 0.4;// in ohm
+omega=2*%pi*f;
+C1=C2*R4/R3;//in F
+disp(C1*10^6,"Unknown capacitance in micro F ");
+r1=(R3*(R2+r2))/R4;//in ohm
+disp(r1,"Resistance of unknown capacitance in ohm")
+Tan_del_1= omega*C1*r1;
+disp(Tan_del_1,"Dissipation factor is ")
diff --git a/1859/CH7/EX7.7/exa_7_7.sce b/1859/CH7/EX7.7/exa_7_7.sce new file mode 100755 index 000000000..08d9bf23a --- /dev/null +++ b/1859/CH7/EX7.7/exa_7_7.sce @@ -0,0 +1,17 @@ +// Exa 7.7
+clc;
+clear;
+close;
+// Given data
+f=50;//in Hz
+R2=330*10^3;//in ohm
+R3=15*10^3;// in ohm
+R4=22*10^3;//in ohm
+C2=0.12*10^-6;//in F
+omega=2*%pi*f;
+R1= R2*R3/R4;// in ohm
+disp(R1*10^-3,"Resistive component of unknown resistance in kohm")
+C1= C2*R4/R3;// in F
+disp(C1*10^6,"Capacitive component of unknown capacitor in micro F")
+D=1/(omega*C1*R1);
+disp(D,"Dissipation factor is ")
diff --git a/1859/CH7/EX7.8/exa_7_8.sce b/1859/CH7/EX7.8/exa_7_8.sce new file mode 100755 index 000000000..142367b67 --- /dev/null +++ b/1859/CH7/EX7.8/exa_7_8.sce @@ -0,0 +1,17 @@ +// Exa 7.8
+clc;
+clear;
+close;
+// Given data
+f=50;//in Hz
+R4=309;//in ohm
+R2=100;// in ohm
+C3=109*10^-12;//in F
+C4=0.5*10^-6;//in F
+omega=2*%pi*f;
+Cx= C3*R4/R2;// in F
+disp(Cx*10^12,"Equivalent series capacitance in µµF");
+Rx= C4*R2/C3;// in ohm
+// Power factor of the specimen
+Tan_delta= omega*Cx*Rx;
+disp(Tan_delta,"Power factor of the specimen is ")
diff --git a/1859/CH7/EX7.9/exa_7_9.sce b/1859/CH7/EX7.9/exa_7_9.sce new file mode 100755 index 000000000..0129a5d69 --- /dev/null +++ b/1859/CH7/EX7.9/exa_7_9.sce @@ -0,0 +1,24 @@ +// Exa 7.9
+clc;
+clear;
+close;
+// Given data
+f=50;//in Hz
+R4=1000;//in ohm
+C3=50*10^-12;//in F
+delta=9;// in °
+epsilon_r= 2.3;
+epsilon_0= 8.854*10^-12;
+d= 0.3*10^-2;// in meter
+A=314;// area of each electrode in square cm
+A=A*10^-4;// in square meter
+omega=2*%pi*f;
+C1= epsilon_r*epsilon_0*A/d;// in F
+// Formula tan (delta)= 1/(omega*C1*R1)
+R1= 1/(omega*C1*tand(delta));// in ohm
+C4= 1/(omega^2*C1*R1*R4);// in F
+disp(C4*10^6,"Variable capacitor in micro F")
+R2= C3*R4*(cosd(delta))^2/C1;// in ohm
+disp(R2,"Variable resistance in ohm")
+
+// Note: Calculation of R2 in the book is wrong
|