diff options
Diffstat (limited to '1820/CH9/EX9.11')
-rwxr-xr-x | 1820/CH9/EX9.11/Example9_11.sce | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/1820/CH9/EX9.11/Example9_11.sce b/1820/CH9/EX9.11/Example9_11.sce new file mode 100755 index 000000000..31f34cbbb --- /dev/null +++ b/1820/CH9/EX9.11/Example9_11.sce @@ -0,0 +1,58 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// CHAPTER : 9 : SYMMETRICAL COMPONENTS AND FAULT ANALYSIS
+
+// EXAMPLE : 9.11 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+kv = 230 ; // Line voltage in kV from Exa 9.9
+Z_0 = 0.56*%i ; // Zero-sequence impedance in pu
+Z_1 = 0.2618*%i ; // Zero-sequence impedance in pu
+Z_2 = 0.3619*%i ; // Zero-sequence impedance in pu
+z_f = 5 ; // Fault impedance in Ω
+v = 1*exp(%i*0*%pi/180) ; //
+a = 1*exp(%i*120*%pi/180) ; // By symmetrical components theory to 3-Φ system
+A = [1 1 1; 1 a^2 a ;1 a a^2] ;
+
+// CALCULATIONS
+// For case (b)
+I_a0 = 0 ; // Sequence current in A
+Z_B = kv^2/200 ; // Base impedance of 230 kV line
+Z_f = z_f/Z_B ; // fault impedance in pu
+I_a1 = v/(Z_1 + Z_2 + Z_f) ; // Sequence current in pu A
+I_a2 = - I_a1 ; // Sequence current in pu A
+I_f = [A] * [I_a0 ; I_a1 ; I_a2] ; // Phase current in pu A
+
+// For case (c)
+V_a = [0 ; v ; 0]-[Z_0 0 0 ; 0 Z_1 0 ; 0 0 Z_2]*[I_a0 ; I_a1 ; I_a2] ; // Sequence voltages in pu V
+V_f = A*V_a ; // Phase voltages in pu V
+
+// For case (d)
+V_abf = V_f(1,1) - V_f(2,1) ; // Line-to-line voltages at fault points in pu V
+V_bcf = V_f(2,1) - V_f(3,1) ; // Line-to-line voltages at fault points in pu V
+V_caf = V_f(3,1) - V_f(1,1) ; // Line-to-line voltages at fault points in pu V
+
+
+
+// DISPLAY RESULTS
+disp("EXAMPLE : 9.11 :SOLUTION :-") ;
+printf("\n (b) Sequence currents are , \n") ;
+printf("\n I_a0 = %.f pu A ",I_a0) ;
+printf("\n I_a1 = %.4f<%.2f pu A ",abs(I_a1),atand( imag(I_a1),real(I_a1) )) ;
+printf("\n I_a2 = %.4f<%.2f pu A ",abs(I_a2),atand( imag(I_a2),real(I_a2) )) ;
+printf("\n \n Phase currents are , [I_af ; I_bf ; I_cf] = pu A \n") ;
+printf("\n %.4f<%.1f ",abs(I_f),atand(imag(I_f),real(I_f) )) ;
+printf("\n \n (c) Sequence voltages are , [V_a0 ; V_a1 ; V_a2] = pu V \n") ;
+printf("\n %.4f<%.1f ",abs(V_a),atand(imag(V_a),real(V_a) )) ;
+printf("\n \n Phase voltages are , [V_af ; V_bf ; V_cf] = pu V \n") ;
+printf("\n %.4f<%.1f ",abs(V_f),atand(imag(V_f),real(V_f) )) ;
+printf("\n \n (d) Line-to-line voltages at the fault points are \n") ;
+printf("\n V_abf = %.4f<%.1f pu V \n",abs(V_abf),atand( imag(V_abf),real(V_abf) )) ;
+printf("\n V_bcf = %.4f<%.1f pu V \n",abs(V_bcf),atand( imag(V_bcf),real(V_bcf) )) ;
+printf("\n V_caf = %.4f<%.1f pu V \n",abs(V_caf),atand( imag(V_caf),real(V_caf) )) ;
+
+printf("\n \n NOTE : ERROR : Minor calclation mistake in textbook ") ;
|