diff options
Diffstat (limited to '1820/CH14')
-rwxr-xr-x | 1820/CH14/EX1.C/ExampleC_1.sce | 31 | ||||
-rwxr-xr-x | 1820/CH14/EX2.C/ExampleC_2.sce | 43 | ||||
-rwxr-xr-x | 1820/CH14/EX3.C/ExampleC_3.sce | 43 | ||||
-rwxr-xr-x | 1820/CH14/EX4.C/ExampleC_4.sce | 103 | ||||
-rwxr-xr-x | 1820/CH14/EX5.C/ExampleC_5.sce | 30 | ||||
-rwxr-xr-x | 1820/CH14/EX6.C/ExampleC_6.sce | 33 |
6 files changed, 283 insertions, 0 deletions
diff --git a/1820/CH14/EX1.C/ExampleC_1.sce b/1820/CH14/EX1.C/ExampleC_1.sce new file mode 100755 index 000000000..c9d43c0cb --- /dev/null +++ b/1820/CH14/EX1.C/ExampleC_1.sce @@ -0,0 +1,31 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// APPENDIX C : REVIEW OF BASICS
+
+// EXAMPLE : C.1 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+z = 100 * exp(60*%i*%pi/180) ; // Impedance of transmission line in Ω
+v1 = 73034.8 * exp(30*%i*%pi/180) ; // Bus voltages in V
+v2 = 66395.3 * exp(20*%i*%pi/180) ; // Bus voltages in V
+
+// CALCULATIONS
+// For case (a)
+S_12 = v1 * ( conj(v1) - conj(v2) )/( conj(z) ) ; // Complex power per phase in VA
+
+
+// For case (b)
+P_12 = real(S_12) ; // Active power per phase in W
+
+// For case (c)
+Q_12 = imag(S_12) ; // Reactive power per phase in vars
+
+// DISPLAY RESULTS
+disp("EXAMPLE : C.1 : SOLUTION :-") ;
+printf("\n (a) Complex power per phase that is being transmitted from bus 1 to bus 2 , S12 = %.2f<%.2f VA \n",abs(S_12), atan(imag(S_12),real(S_12))*(180/%pi)) ;
+printf("\n (b) Active power per phase that is being transmitted , P12 = %.2f W \n",P_12) ;
+printf("\n (b) Reactive power per phase that is being transmitted , Q12 = %.2f vars \n",Q_12) ;
diff --git a/1820/CH14/EX2.C/ExampleC_2.sce b/1820/CH14/EX2.C/ExampleC_2.sce new file mode 100755 index 000000000..44d7b5300 --- /dev/null +++ b/1820/CH14/EX2.C/ExampleC_2.sce @@ -0,0 +1,43 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// APPENDIX C : REVIEW OF BASICS
+
+// EXAMPLE : C.2 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+X_pu = 12/100 ; // Leakage reactance in pu
+kV_B_HV = 345 ; // HV side ratings in Y kV
+kV_B_LV = 34.5 ; // LV side ratings in Y kV
+MVA_B = 20 ; // selected Base on HV side in MVA
+
+// CALCULATIONS
+// For case (a)
+X_pu = 12/100 ; // Reactance of transformer in pu
+
+// For case (b)
+Z_B_HV = (kV_B_HV)^2/MVA_B ; // HV side base impedance in Ω
+
+// For case (c)
+Z_B_LV = (kV_B_LV)^2/MVA_B ; // LV side base impedance in Ω
+
+// For case (d)
+X_HV = X_pu * Z_B_HV ; // Reactance referred to HV side in Ω
+
+// For case (e)
+X_LV = X_pu * Z_B_LV ; // Reactance referred to LV side in Ω
+n = (kV_B_HV/sqrt(3))/(kV_B_LV/sqrt(3)) ; // Turns ratio of winding
+X_LV1 = X_HV/n^2 ; // From equ C.89
+
+// DISPLAY RESULTS
+disp("EXAMPLE : C.2 : SOLUTION :-") ;
+printf("\n (a) Reactance of transformer in pu , X_pu = %.2f pu \n",X_pu) ;
+printf("\n (b) High-voltage side base impedance , Z_B_HV = %.2f Ω \n",Z_B_HV) ;
+printf("\n (c) Low-voltage side base impedance , Z_B_LV = %.4f Ω \n",Z_B_LV) ;
+printf("\n (d) Transformer reactance referred to High-voltage side , X_HV = %.2f Ω \n",X_HV) ;
+printf("\n (e) Transformer reactance referred to Low-voltage side , X_LV = %.4f Ω \n",X_LV) ;
+printf(" (or) From another equation C.89 ,") ;
+printf("\n Transformer reactance referred to Low-voltage side , X_LV = %.4f Ω \n",X_LV1) ;
diff --git a/1820/CH14/EX3.C/ExampleC_3.sce b/1820/CH14/EX3.C/ExampleC_3.sce new file mode 100755 index 000000000..cd350fd5a --- /dev/null +++ b/1820/CH14/EX3.C/ExampleC_3.sce @@ -0,0 +1,43 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// APPENDIX C : REVIEW OF BASICS
+
+// EXAMPLE : C.3 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+X_pu = 12/100 ; // Leakage reactance in pu
+kV_B_HV = 345 ; // HV side ratings in Y kV
+kV_B_LV = 34.5 ; // LV side ratings in Δ kV
+MVA_B = 20 ; // Base on HV side in MVA
+
+// CALCULATIONS
+// For case (a)
+n = ( kV_B_HV/sqrt(3) )/kV_B_LV ; // Turns ratio of windings
+
+// For case (b)
+Z_B_HV = (kV_B_HV)^2/MVA_B ; // HV side base impedance in Ω
+X_HV = X_pu * Z_B_HV ; // Reactance referred to HV side in Ω
+X_LV = X_HV/(n^2) ; // transformer reactance referred to delta LV side in Ω
+
+// For case (c)
+Z_dt = X_LV ;
+Z_Y = Z_dt/3 ; // Reactance of equi wye connection
+Z_B_LV = kV_B_LV^2/MVA_B ; // LV side base impedance in Ω
+X_pu1 = Z_Y/Z_B_LV ; // reactance in pu referred to LV side
+
+// Alternative method For case (c)
+n1 = kV_B_HV/kV_B_LV ; // Turns ratio if line-to-line voltages are used
+X_LV1 = X_HV/(n1^2) ; // Reactance referred to LV side in Ω
+X_pu2 = X_LV1/Z_B_LV ; // reactance in pu referred to LV side
+
+// DISPLAY RESULTS
+disp("EXAMPLE : C.3 : SOLUTION :-") ;
+printf("\n (a) Turns ratio of windings , n = %.4f \n",n) ;
+printf("\n (b) Transformer reactance referred to LV side in ohms ,X_LV = %.4f Ω \n",X_LV) ;
+printf("\n (c) Transformer reactance referred to LV side in per units ,X_pu = %.2f pu \n",X_pu1) ;
+printf("\n (or) From another equation if line-to-line voltages are used ,") ;
+printf("\n Transformer reactance referred to LV side in per units ,X_pu = %.2f pu \n",X_pu2) ;
diff --git a/1820/CH14/EX4.C/ExampleC_4.sce b/1820/CH14/EX4.C/ExampleC_4.sce new file mode 100755 index 000000000..f346c474f --- /dev/null +++ b/1820/CH14/EX4.C/ExampleC_4.sce @@ -0,0 +1,103 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// APPENDIX C : REVIEW OF BASICS
+
+// EXAMPLE : C.4 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+I_1 = 1000 ; // Physical current in A for 2.4 kV circuit
+Z_pu = 0.04 ; // Leakage reactance in pu
+I_pu = 2.08*exp(%i*(-90)*%pi/180) ; // Generator supply for pure inductive load
+kVA_Bg1 = 6000 ; // Rated kVA values for T1
+kVA_Bg2 = 4000 ; // Rated kVA values for T2
+N2 = 2.4 ; // N2 = V2 in Y kV ,refer fig C.4
+N1 = 24 ; // N1 = V1 in Y kV ,refer fig C.4
+N3 = 24 ; // N3 = V3 = N1 in Y kV ,refer fig C.4
+N4 = 12 ; // N4 = V4 in Y kV ,refer fig C.4
+
+// CALCULATIONS
+// For case (a)
+kVA_B = 2080 ; // arbitrarily selected kVA values for all 3 ckt
+
+// For case (b)
+n1 = N2/N1 ; // Turns ratio of transformer T1 & T2 i.e N2/N1
+n2 = N3/N4 ; // Turns ratio N1'/N2'
+kV_BL_L1 = 2.5 ; // arbitrarily selected Base voltage for 2.4 kV ckt in kV
+kV_BL_L2 = kV_BL_L1/n1 ; // arbitrarily selected Base voltage for 24 kV ckt in kV
+kV_BL_L3 = kV_BL_L2/n2 ; // arbitrarily selected Base voltage for 12 kV ckt in kV
+
+// For case (c)
+Z_B1 = (kV_BL_L1)^(2) * 1000/(kVA_B) ; // Base impedance in Ω for 2.4 kV ckt
+Z_B2 = (kV_BL_L2)^(2) * 1000/(kVA_B) ; // Base impedance in Ω for 24 kV ckt
+Z_B3 = (kV_BL_L3)^(2) * 1000/(kVA_B) ; // Base impedance in Ω for 12 kV ckt
+
+// For case (d)
+I_B1 = kVA_B/(sqrt(3)*kV_BL_L1) ; // Base current in A for 2.4 kV ckt
+I_B2 = kVA_B/(sqrt(3)*kV_BL_L2) ; // Base current in A for 24 kV ckt
+I_B3 = kVA_B/(sqrt(3)*kV_BL_L3) ; // Base current in A for 12 kV ckt
+
+// For case (e)
+I_2 = (n1) * I_1 ; // Physical current in A for 24 kV circuit
+I_4 = (n2) * I_2 ; // Physical current in A for 12 kV circuit
+
+// For case (f)
+I_pu_3ckt = abs(I_pu) ; // per-unit current values for all 3-ckt
+
+// For case (g)
+kV_B1 = N2 ; // Given voltage in kV
+kV_B2 = N4 ; // Given voltage in kV
+Z_pu_T1 = (%i)*Z_pu*(kVA_B/kVA_Bg1)*(kV_B1/kV_BL_L1)^(2) ; // New reactance of T1
+Z_pu_T2 = (%i)*Z_pu*(kVA_B/kVA_Bg2)*(kV_B2/kV_BL_L3)^(2) ; // New reactance of T2
+
+// For case (h)
+V1 = kV_B1/kV_BL_L1 ; // voltage in pu at bus 1
+V2 = V1 - I_pu * (Z_pu_T1) ; // voltage in pu at bus 2
+V4 = V2 - I_pu * (Z_pu_T2) ; // voltage in pu at bus 3
+
+// For case (i)
+S1 = V1 * abs(I_pu) ; // Apparent power value at bus 1 in pu
+S2 = V2 * abs(I_pu) ; // Apparent power value at bus 2 in pu
+S4 = V4 * abs(I_pu) ; // Apparent power value at bus 4 in pu
+
+// DISPLAY RESULTS
+disp("EXAMPLE : C.3 : SOLUTION :-") ;
+printf("\n (a) Base kilovoltampere value for all 3-circuits is , kVA_B = %.1f kVA \n",kVA_B) ;
+printf("\n (b) Base line-to-line kilovolt value for 2.4 kV circuit , kV_BL_L = %.1f kV \n",kV_BL_L1) ;
+printf("\n Base line-to-line kilovolt value for 24 kV circuit , kV_BL_L = %.1f kV \n",kV_BL_L2) ;
+printf("\n Base line-to-line kilovolt value for 24 kV circuit , kV_BL_L = %.1f kV \n",kV_BL_L3) ;
+printf("\n (c) Base impedance value of 2.4 kV circuit , Z_B = %.3f Ω \n",Z_B1) ;
+printf("\n Base impedance value of 24 kV circuit , Z_B = %.1f Ω \n",Z_B2) ;
+printf("\n Base impedance value of 12.5 kV circuit , Z_B = %.1f Ω \n",Z_B3) ;
+printf("\n (d) Base current value of 2.4 kV circuit , I_B = %d A \n",I_B1) ;
+printf("\n Base current value of 24 kV circuit , I_B = %d A \n",I_B2) ;
+printf("\n Base current value of 2.4 kV circuit , I_B = %d A \n",I_B3) ;
+printf("\n (e) Physical current of 2.4 kV circuit , I = %.f A \n",I_1) ;
+printf("\n Physical current of 24 kV circuit , I = %.f A \n",I_2) ;
+printf("\n Physical current of 12 kV circuit , I = %.f A \n",I_4) ;
+printf("\n (f) Per unit current values for all 3 circuits , I_pu = %.2f pu \n",I_pu_3ckt) ;
+printf("\n (g) New transformer reactance of T1 , Z_pu_T1 = j%.4f pu \n",abs(Z_pu_T1)) ;
+printf("\n New transformer reactance of T2 , Z_pu_T2 = j%.4f pu \n",abs(Z_pu_T2)) ;
+printf("\n (h) Per unit voltage value at bus 1 ,V1 = %.2f<%.1f pu \n",abs(V1),atand(imag(V1),real(V1))) ;
+printf("\n Per unit voltage value at bus 2 ,V2 = %.4f<%.1f pu \n",abs(V2),atand(imag(V2),real(V2))) ;
+printf("\n Per unit voltage value at bus 4 ,V4 = %.4f<%.1f pu \n",abs(V4),atand(imag(V4),real(V4))) ;
+printf("\n (i) Per-unit apparent power value at bus 1 , S1 = %.2f pu \n",S1) ;
+printf("\n Per-unit apparent power value at bus 2 , S2 = %.4f pu \n",S2) ;
+printf("\n Per-unit apparent power value at bus 4 , S4 = %.4f pu \n",S4) ;
+printf("\n (j) TABLE C.2 \n") ;
+printf("\n Results Of Example C.4 \n") ;
+printf("\n ___________________________________________________________________________________") ;
+printf("\n QUANTITY \t 2.4-kV circuit \t 24-kV circuit \t 12-kV circuit ");
+printf("\n ___________________________________________________________________________________") ;
+printf("\n kVA_B(3-Φ) \t %d kVA \t %d kVA \t %d kVA \n",kVA_B,kVA_B,kVA_B) ;
+printf("\n kV_B(L-L) \t %.1f kV \t %d kV \t %.1f kV \n",kV_BL_L1,kV_BL_L2,kV_BL_L3) ;
+printf("\n Z_B \t %.3f Ω \t %.1f Ω \t %.1f Ω \n",Z_B1,Z_B2,Z_B3) ;
+printf("\n I_B \t %d A \t %d A \t %d A \n",I_B1,I_B2,I_B3) ;
+printf("\n I_physical \t %d A \t %.f A \t %.f A \n",I_1,I_2,I_4) ;
+printf("\n I_pu \t %.2f pu \t %.2f pu \t %.2f pu \n",I_pu_3ckt,I_pu_3ckt,I_pu_3ckt) ;
+printf("\n V_pu \t %.2f pu \t %.4f pu \t %.4f pu \n",abs(V1),abs(V2),abs(V4)) ;
+printf("\n S_pu \t %.2f pu \t %.4f pu \t %.4f pu \n",S1,S2,S4) ;
+printf(" ___________________________________________________________________________________") ;
diff --git a/1820/CH14/EX5.C/ExampleC_5.sce b/1820/CH14/EX5.C/ExampleC_5.sce new file mode 100755 index 000000000..351e319d6 --- /dev/null +++ b/1820/CH14/EX5.C/ExampleC_5.sce @@ -0,0 +1,30 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// APPENDIX C : REVIEW OF BASICS
+
+// EXAMPLE : C.5 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+D_ab = 6.8 ; // distance b/w conductors center-to-center in ft
+D_bc = 5.5 ; // distance b/w conductors center-to-center in ft
+D_ca = 4 ; // distance b/w conductors center-to-center in ft
+
+// CALCULATIONS
+// For case (a)
+D_eq = (D_ab * D_bc * D_ca)^(1/3) ; // Equi spacing for pole top in ft
+D_s = 0.01579 ; // GMR in ft From Table A.1
+X_L = 0.1213 * log(D_eq/D_s) ; // Inductive reactance in Ω/mi . From equ C.135
+
+// For case (b)
+X_a = 0.503 ; // Inductive reactance in Ω/mi From Table A.1
+X_d = 0.2026 ; // From Table A.8 for D_eq,by linear interpolation in Ω/mi
+X_L1 = X_a + X_d ; // Inductive reactance in Ω/mi
+
+// DISPLAY RESULTS
+disp("EXAMPLE : C.5 : SOLUTION :-") ;
+printf("\n (a) Inductive reactance using equation C.135 , X_L = %.4f Ω/mi \n",X_L );
+printf("\n (b) Inductive reactance using tables , X_L = %.4f Ω/mi \n",X_L1) ;
diff --git a/1820/CH14/EX6.C/ExampleC_6.sce b/1820/CH14/EX6.C/ExampleC_6.sce new file mode 100755 index 000000000..f19dfad32 --- /dev/null +++ b/1820/CH14/EX6.C/ExampleC_6.sce @@ -0,0 +1,33 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// APPENDIX C : REVIEW OF BASICS
+
+// EXAMPLE : C.6 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+D_ab = 6.8 ; // distance b/w conductors center-to-center in ft
+D_bc = 5.5 ; // distance b/w conductors center-to-center in ft
+D_ca = 4 ; // distance b/w conductors center-to-center in ft
+l = 100 ; // Line length in miles
+
+// CALCULATIONS
+// For case (a)
+D_m = (D_ab * D_bc * D_ca)^(1/3) ; // Equi spacing for pole top in ft
+r = 0.522/(2 * 12) ; // feet
+X_C = 0.06836 * log10 (D_m/r) ; // Shunt capacitive reactance in MΩ*mi
+
+// For case (b)
+X_a = 0.1136 ; // Shunt capacitive reactance in MΩ*mi , From table A.1
+X_d = 0.049543 ; // Shunt capacitive reactance spacing factor in MΩ*mi , From table A.9
+X_C1 = X_a + X_d ; // Shunt capacitive reactance in MΩ*mi
+X_C2 = X_C1/l ; // Capacitive reactance of 100 mi line in MΩ
+
+// DISPLAY RESULTS
+disp("EXAMPLE : C.6 : SOLUTION :-") ;
+printf("\n (a) Shunt capacitive reactance using equation C.156 , X_C = %.6f MΩ*mi \n",X_C) ;
+printf("\n (b) Shunt capacitive reactance using tables , X_C = %.6f MΩ*mi \n",X_C1) ;
+printf("\n (c) Capacitive reactance of total line , X_C = %.5e MΩ \n",X_C2) ;
|