summaryrefslogtreecommitdiff
path: root/181/CH2/EX2.29
diff options
context:
space:
mode:
Diffstat (limited to '181/CH2/EX2.29')
-rwxr-xr-x181/CH2/EX2.29/example2_29.sce31
-rwxr-xr-x181/CH2/EX2.29/example2_29.txt9
2 files changed, 40 insertions, 0 deletions
diff --git a/181/CH2/EX2.29/example2_29.sce b/181/CH2/EX2.29/example2_29.sce
new file mode 100755
index 000000000..d419ff2e1
--- /dev/null
+++ b/181/CH2/EX2.29/example2_29.sce
@@ -0,0 +1,31 @@
+// Height of potential energy barrier
+// Basic Electronics
+// By Debashis De
+// First Edition, 2010
+// Dorling Kindersley Pvt. Ltd. India
+// Example 2-29 in page 104
+
+clear; clc; close;
+
+// Given data
+rho1=2; // Resistivity of p-side in ohm-cm
+rho2=1; // Resistivity of n-side in ohm-cm
+e=1.6*10^-19; // Charge on an electron in C
+
+// Calculation
+N_A1=1/(rho1*e*1800);
+N_D1=1/(rho2*e*3800);
+N_A2=1/(rho1*e*500);
+N_D2=1/(rho2*e*1300);
+V_01=0.026*log((N_A1*N_D1)/(2.5*10^13)^2);
+V_02=0.026*log((N_A2*N_D2)/(1.5*10^10)^2);
+printf("(a)For Ge:\n");
+printf("N_A = %0.2e /cm^3\nN_D = %0.2e /cm^3\n",N_A1,N_D1);
+printf("Therefore barrier potential energy for Ge = %0.2f eV\n\n",V_01);
+printf("(b)For Si:\n");
+printf("N_A = %0.2e /cm^3\nN_D = %0.2e /cm^3\n",N_A2,N_D2);
+printf("Therefore barrier potential energy for Si = %0.3f eV",V_02);
+
+// Result
+// (a) Height of barrier potential energy for Ge = 0.22 eV
+// (b) Height of barrier potential energy for Si = 0.667 eV \ No newline at end of file
diff --git a/181/CH2/EX2.29/example2_29.txt b/181/CH2/EX2.29/example2_29.txt
new file mode 100755
index 000000000..94341c18a
--- /dev/null
+++ b/181/CH2/EX2.29/example2_29.txt
@@ -0,0 +1,9 @@
+(a)For Ge:
+N_A = 1.74e+015 /cm^3
+N_D = 1.64e+015 /cm^3
+Therefore barrier potential energy for Ge = 0.22 eV
+
+(b)For Si:
+N_A = 6.25e+015 /cm^3
+N_D = 4.81e+015 /cm^3
+Therefore barrier potential energy for Si = 0.666 eV \ No newline at end of file