diff options
Diffstat (limited to '1808/CH5')
35 files changed, 945 insertions, 0 deletions
diff --git a/1808/CH5/EX5.1/Chapter5_Exampl1.sce b/1808/CH5/EX5.1/Chapter5_Exampl1.sce new file mode 100644 index 000000000..7e505ea82 --- /dev/null +++ b/1808/CH5/EX5.1/Chapter5_Exampl1.sce @@ -0,0 +1,43 @@ +clc
+clear
+//INPUT DATA
+g=1.4;//for isentropic compression
+n=1.3;//for polytropic compression
+p1=1;//pressure in bar
+v1=0.05;//piston displacement in m^3
+R=0.287;//gas constant
+Rp=6;//compression ratio at constant pressure
+t1=293;//temperature in K
+
+//CALCULATIONS
+//Isentropic copression
+m=(p1*10^5*v1)/(1000*R*t1);//mass of air handled in kg
+t21=t1*(Rp^((g-1)/g));//Temperature at the end of compression
+ws=p1*10^5*v1/1000;//workdone by air during suction
+wc=m*R*(t21-t1)/(g-1);//workdone by air during compression
+wd=m*R*t21;//workdone by air during delivery
+wn=wc+wd-ws;//net work done on air during cycle in kJ
+
+//Polytropic compression
+t2=t1*(Rp^((n-1)/n));//Temperature at the end of compression
+ws1=p1*10^2*v1;//workdone by air during suction
+wc1=m*R*(t2-t1)/(n-1);//workdone by air during compression
+Qc1=((g-n)/(g-1))*wc1;//Heat transferred to the cylinder walls
+wd1=m*R*t2;//workdone by air during delivery
+wn1=wc1+wd1-ws1;//net work done on air during cycle in kJ
+
+//Isothermal compression
+ws2=p1*10^2*v1;//workdone by air during suction
+wc2=p1*10^2*v1*log(Rp);//workdone by air during compression
+wd2=p1*10^2*v1;//workdone by air during delivery
+wn2=wc2+wd2-ws2;//net work done during cycle
+
+//OUTPUT
+printf('(i)isentropic compression \n (a)Temperature at the end of compression is %3.2f K \n (b)Workdone by air during suction is %3.1f kNm \n (c)workdone during compression is %3.3f kJ \n heat transfer to the cylinder walls is zero \n (d)workdone on air during delivery %3.2f kJ \n (e)Net workdone on air during cycle is %3.4f kJ \n',t21,ws,wc,wd,wn)
+
+printf('(i)Polytropic compression \n (a)Temperature at the end of compression is %3.2f K \n (b)Workdone by air during suction is %3.1f kNm \n (c)workdone during compression is %3.3f kJ \n heat transfer to the cylinder walls is %3.4f kJ \n (d)workdone on air during delivery %3.2f kJ \n (e)Net workdone on air during cycle is %3.4f kJ \n',t2,ws1,wc1,Qc1,wd1,wn1)
+
+printf('(i)isothermal compression \n (a)Temperature at the end of compression is 293K \n (b)Workdone by air during suction is %3.1f kNm \n (c)workdone during compression is %3.3f kJ \n heat transfer to the cylinder walls is equal to workdone during compression \n (d)workdone on air during delivery %3.2f kJ \n (e)Net workdone on air during cycle is %3.4f kJ \n',ws2,wc2,wd2,wn2)
+
+
+
diff --git a/1808/CH5/EX5.10/Chapter5_Exampl10.sce b/1808/CH5/EX5.10/Chapter5_Exampl10.sce new file mode 100644 index 000000000..d7ff200cb --- /dev/null +++ b/1808/CH5/EX5.10/Chapter5_Exampl10.sce @@ -0,0 +1,25 @@ +clc
+clear
+//INPUT DATA
+c=0.04;//clearance volume
+p1=0.98;//pressure in bar
+p2=7;//pressure in bar
+n=1.3;//constant for cylinder
+pa=1.013;//ambient pressure in bar
+x=1.3;//stroke to bore ratio
+va=0.25;//volume in m^3/sec
+ta=300;//ambient temperature in K
+t1=313;//temperature in K
+
+//CALCULATIONS
+nv=(1+c-c*((p2/p1)^(1/n)))*100;//volumetric efficiency in percentage
+v14=(pa-va)*t1/(p1*ta);//volume in m^3/sec
+vs=v14/nv;//swept volume in m^3/sec
+l=(0.03141*4/(3.14*9))^(1/3);//stroke length in m
+d=3*l;//bore length in m
+ip=(n/(n-1))*p1*10^2*(v14)*(((p2/p1)^((n-1)/n))-1);//indicated power in kW
+
+//OUTPUT
+printf('(i)Volumetric efficiency is %3.2f percentage \n (ii)Cylinder dimensions \n l= %3.4f m \n d= %3.3f m \n (iii)Indicated power %3.3f kW',nv,l,d,ip)
+
+
diff --git a/1808/CH5/EX5.11/Chapter5_Exampl11.sce b/1808/CH5/EX5.11/Chapter5_Exampl11.sce new file mode 100644 index 000000000..6990a0f42 --- /dev/null +++ b/1808/CH5/EX5.11/Chapter5_Exampl11.sce @@ -0,0 +1,14 @@ +clc
+clear
+//INPUT DATA
+nv=0.8;//volumetric efficiency in percentage
+vc=3;//clearence volume in litre
+p2=8;//air compressor pressure in bar
+p1=0.98;//air compressor pressure in bar
+
+//CALCULATIONS
+vs=12.085/(1-nv);//stroke volume in m^3
+d=((vs/1000)*4/3.14)^(1/3);//cylinder length in m
+
+//OUTPUT
+printf('(i)The stroke volume is %3.5f litre \n (ii)cylinder dimensions (l=d) is %3.4f m ',vs,d)
diff --git a/1808/CH5/EX5.12/Chapter5_Exampl12.sce b/1808/CH5/EX5.12/Chapter5_Exampl12.sce new file mode 100644 index 000000000..2d07c718a --- /dev/null +++ b/1808/CH5/EX5.12/Chapter5_Exampl12.sce @@ -0,0 +1,25 @@ +clc
+clear
+//INPUT DATA
+pd=8;//delivery pressure in bar
+p1=1;//pressure in bar
+n=1.3;//for single compression
+m=2;//mass flow rate
+R=0.287;//gas constant
+t1=293;//temperature in K
+N=2;//number of stages
+t51=303;//temperature in K
+
+//CALCULATIONS
+wd1=(n/(n-1))*(m/60)*R*t1*(((pd/p1)^((n-1)/n))-1);//work done in single stage compression
+wd2=N*(n/(n-1))*(m/60)*R*t1*(((pd/p1)^((n-1)/(N*n)))-1);//work done in two stage compression
+wd3=(n/(n-1))*(m/60)*R*(((2*(t1*t51)^(1/2))*((pd/p1)^((n-1)/(n*N))))-(t1+t51));//work done in two stage compression with imperfect inter cooling
+wd4=(m/60)*R*t1*log(pd/p1);//single stage compression in kW
+p2=((wd1-wd2)/wd1)*100;//Percentage saving in 1st and 2nd stage
+p3=((wd1-wd3)/wd1)*100;//Percentage saving in 1st and 3rd stage
+p4=((wd1-wd4)/wd1)*100;//Percentage saving in 1st and 4th stage
+
+//OUTPUT
+printf('(i)work done in single stage compression is %3.3f kW \n (ii)work done in two stage compression is %3.4f kW \n (iii)work done in two stage compression with imperfect inter cooling is %3.4f kW \n (iv)single stage compression workdone is %3.4f kW \n ',wd1,wd2,wd3,wd4 )
+
+printf('Percentage saving in 1st and 2nd stage %3.3f percentage \n Percentage saving in 1st and 3rd stage %3.3f percentage \n Percentage saving in 1st and 4th stage %3.3f percentage \n',p2,p3,p4 )
diff --git a/1808/CH5/EX5.13/Chapter5_Exampl13.sce b/1808/CH5/EX5.13/Chapter5_Exampl13.sce new file mode 100644 index 000000000..0fd56f0d1 --- /dev/null +++ b/1808/CH5/EX5.13/Chapter5_Exampl13.sce @@ -0,0 +1,20 @@ +clc
+clear
+//INPUT DATA
+n=1.2;//constant for multistage compressor
+c=4;//clearance
+p4=20;//pressure in bar
+p1=1;//pressure in bar
+v1=15;//volume of free air in m^3/min
+
+//CALCULATIONS
+N=2.16;//(4^N=20) //No.of stages
+C=(p4/p1)^(1/3);//Exact stage pressure ratio
+p2=C*p1;//Intermediate pressure in bar
+p3=C*p2;//Intermediate pressure in bar
+p4=C*p3;//Intermediate pressure in bar
+P=(3*(n/(n-1))*p1*10^5*(v1/60)*(((p4/p1)^((n-1)/(3*n)))-1))/1000;//Power required to compress
+
+//OUTPUT
+printf('(a)No.of stages is %3.2f \n (b)Intermediate pressures %3.2f bar \n pressure p3 %3.2f bar \n pressure p4 %3.2f bar \n (c)Power required to compress is %3.i kW',N,p2,p3,p4,P)
+
diff --git a/1808/CH5/EX5.14/Chapter5_Exampl14.sce b/1808/CH5/EX5.14/Chapter5_Exampl14.sce new file mode 100644 index 000000000..31f582bce --- /dev/null +++ b/1808/CH5/EX5.14/Chapter5_Exampl14.sce @@ -0,0 +1,32 @@ +clc
+clear
+//INPUT DATA
+n=1.3;//index of compression
+p1=1;//pressure in bar
+va=2;//volume of air in m^3
+N=2;//No.of stages
+p3=50;//delivery pressure in bar
+R=0.287;//gas constant
+t1=303;//temperature in K
+t31=314;//temperature in K
+vcs=0.05;//ratio of clearance volume to stroke volume
+
+//CALCULATIONS
+ip1=(n/(n-1))*p1*10^2*(va/60)*N*(((p3/p1)^((n-1)/(n*N)))-1);//IP for perfect cooling in kW
+m=(p1**10^2*va/(R*t1));//mass flow rate in kg/min
+ip2=(n/(n-1))*(m/60)*R*(t1/3)*(2*sqrt(t1*t31)*(((p3/p1)^((n-1)/(n*N))))-(t1+t31));//IP for imperfect intercooling
+p2=sqrt(p1*p3);//pressure in bar
+nv1=1-vcs*(((p2/p1)^(1/n))-1);//volumetric efficiency in percentage
+vs1=va/nv1;//stroke volume in m^3/min
+d1=(vs1*4/(3.14*N*100))^(1/3);//Dimensions of the cylinder
+d2=d1*(p1/p2);//Dimensions of the cylinder
+v13=(p2/p1);//volume ratio
+v1=1.05*vs1;//volume in m^3
+v2=v1/((p2/p1)^(1/n));//volume in m
+t2=(p2/((p2/p1)^(1/n)))*t1;//temperature in K
+v31=v2*t31/t2;//volume in m
+v131=v1/v31;//volume ratio
+
+//OUTPUT
+printf('(a)IP for Perfect cooling %3.3f kW \n (b) IP for Imperfect intercooling is %3.2f kW \n (a1)perfect intercooling \n cylinder volume ratio is %3.2f \n (b1)Imperfect intercooling \n cylinder volume ratio is %3.3f \n ',ip1,ip2,v13,v131)
+
diff --git a/1808/CH5/EX5.15/Chapter5_Exampl15.sce b/1808/CH5/EX5.15/Chapter5_Exampl15.sce new file mode 100644 index 000000000..109b26392 --- /dev/null +++ b/1808/CH5/EX5.15/Chapter5_Exampl15.sce @@ -0,0 +1,28 @@ +clc
+clear
+//INPUT DATA
+pa=1;//Ambient pressure in bar
+p1=0.98;//pressure in bar
+p2=4;//pressure in bar
+p3=15;//pressure in bar
+ta=293;//Ambient temperature in K
+t1=303;//temperature in K
+t5=303;//temperature in K
+n=1.3;//for two stage compressor
+c=0.05;//clearance volume
+R=0.287;//gas constant
+
+//CALCULATIONS
+nvs=1+c-c*((p2/p1)^(1/n));//Volumetric efficiency in percentage
+nva=((p1/pa)*(ta/t1)*(nvs))*100;//Volumetric efficiency referred to ambient condition in percentage
+wlp=(n/(n-1))*R*t1*(((p2/p1)^((n-1)/n))-1);//work done in Lp cylinder
+whp=(n/(n-1))*R*t5*(((p3/p2)^((n-1)/n))-1);//work done in Hp cylinder
+wt=wlp+whp;//work done in total cylinder
+wiso=R*t1*log(p3/p1);//Isothermal work done per kg of air
+niso=(wiso/wt)*100;//Isothermal efficiency in percentage
+
+//OUTPUT
+printf('(i)The volumetric efficiency referred to ambient condition is %3.2f percentage \n (ii)work done to deliver air by compressor is %3.2f kJ/kg \n (iii)Isothermal efficiency is %3.2f percentage',nva,wt,niso)
+
+
+
diff --git a/1808/CH5/EX5.16/Chapter5_Exampl16.sce b/1808/CH5/EX5.16/Chapter5_Exampl16.sce new file mode 100644 index 000000000..2f205c9d5 --- /dev/null +++ b/1808/CH5/EX5.16/Chapter5_Exampl16.sce @@ -0,0 +1,37 @@ +clc
+clear
+//INPUT DATA
+n=1.3;//index of expansion
+N=2;//no.of stages
+R=0.287;//gas constant
+m=5;//mass flow rate
+t1=288;//temperature in K
+pd=16;//delivery pressure in bar
+p1=1;//pressure in bar
+cp=0.997;//specific pressure in kJ/kgK
+cv=0.71;//specific volume in kJ/kgK
+g=1.4;//constant
+s=400;//speed in rpm
+c1=0.05;//clearance volume
+c2=0.08;//clearance volume
+
+//CALCULATIONS
+ip=N*(n/(n-1))*(m/60)*R*t1*(((pd/p1)^((n-1)/(n*N)))-1);//indicated power in kW
+ipiso=(m/60)*R*t1*log(pd/p1);//indicated power in isothermal condition
+niso=(ipiso/ip)*100;//Isothermal efficiency in percentage
+t2=t1*((pd/p1)^((n-1)/(n*N)));//temperature in K
+Qlp=cv*(g-n)*(t2-t1)*(m/60)/(n-1);//Heat transferred in LP cylinder per second
+Qic=(m/60)*cp*(t2-t1);//Heat transferred in intercooler per seconds
+va=(m/60)*R*t1/(p1*10^2);//Free air delivered in m^3/s
+nvlp=(1+c1-(c1*((pd/p1)^(1/N*n))));//Volumetric efficiency of LP cylinder in percentage
+nvlp1=nvlp*100;//Volumetric efficiency of LP cylinder in percentage
+nvhp=(1+c2-(c2*(pd/p1)^(1/N*n)));//Volumetric efficiency of HP cylinder in percentage
+nvhp1=nvhp*100;//Volumetric efficiency of HP cylinder in percentage
+vslp=va*60/(nvlp*s);//swept volume of LP cylinder
+vshp=va*60/(sqrt(pd*p1)*nvhp*s);//swept volume of HP cylinder
+
+//OUTPUT
+printf('(i)Power required to run the compressor is %3.2f kW \n (ii)Isothermal efficiency is %3.2f percentage \n (iii)Heat transferred in LP cylinder per second is %3.4f kW \n (iv)Free air delivered is %3.5f m^3/sec \n (v)volumetric efficiency of LP is %3.2f percentage \n volumetric efficiency of HP is %3.2f percentage \n swept volume of LP is %3.6f m^3 \n swept volume of HP is %3.6f m^3 \n',ip,niso,Qlp,va,nvlp1,nvhp1,vslp,vshp)
+
+
+
diff --git a/1808/CH5/EX5.17/Chapter5_Exampl17.sce b/1808/CH5/EX5.17/Chapter5_Exampl17.sce new file mode 100644 index 000000000..f2cbcfbac --- /dev/null +++ b/1808/CH5/EX5.17/Chapter5_Exampl17.sce @@ -0,0 +1,30 @@ +clc
+clear
+//INPUT DATA
+p1=0.98;//suction pressure in bar
+p3=18;//delivery pressure in bar
+t1=293;//free conduction temperature in K
+t5=303;//suction temperature in K
+pa=1;//ambient temperature in bar
+n=1.3;//index of expansion
+ta=293;//ambient temperature in K
+N=150;//speed in rpm
+c=0.06;//clearence volume
+v1=5;//volume in m^3
+R=0.287;//gas constant
+
+
+//CALCULATIONS
+m=p1*10^2*v1/(R*t1);//mass of air handled/min
+p2=(p1*p3)^(1/2);//pressure in bar
+ip=N*(n/(n-1))*(m/60)*R*t1*(((p3/p1)^((n-1)/(n*N)))-1);//indicated power in kW
+nv=1+c-(c*((p2/p1)^(1/n)));//volumetric efficiency in percentage
+va=4.5*1*t1/(p1*t5);//colume of air in m^2/min
+vs=va/nv;//swept volume in m^2/min
+d=(vs*4/(3.14*N))^(1/3)*100;//dimensions im cm
+
+//OUTPUT
+printf('(i)Indicated power is %3.3f kW \n (ii)The dimensions of the LP cylinder (d=l)%3.2f cm',ip,d)
+
+
+
diff --git a/1808/CH5/EX5.18/Chapter5_Exampl18.sce b/1808/CH5/EX5.18/Chapter5_Exampl18.sce new file mode 100644 index 000000000..3806ecfb6 --- /dev/null +++ b/1808/CH5/EX5.18/Chapter5_Exampl18.sce @@ -0,0 +1,28 @@ +clc
+clear
+//INPUT DATA
+c=4;//clearance
+p1=1;//pressure in bar
+p5=120;//pressure in bar
+va=15;//volume in m^3/min
+n=1.2;//index of expansion
+
+//CALCULATIONS
+N=log((p5/p1))/log(c);//No.of stages
+//take N=3.5=4 APPROXIMATELY
+C=(p5/p1)^(1/4);//Exact pressure ratio
+p2=C*p1;//Intermediate pressure in bar
+p3=C*p2;//Intermediate pressure in bar
+p4=C*p3;//Intermediate pressure in bar
+P5=C*p4;//Intermediate pressure in bar
+ip=p1*10^2*(va/60)*(n/(n-1))*N*(((p5/p1)^((n-1)/(n*N)))-1);//Minimum power to compress in kW
+
+//OUTPUT
+printf('(i)Number of stages %3.1f \n (ii)Exact pressure ratio %3.2f \n (iii)Intermediate pressure is p2 %3.4f bar \n p3 %3.4f bar \n p4 %3.4f bar \n p5 %3.4f bar \n (iv)Minimum power to compress is %3.2f kW ',N,C,p2,p3,p4,p5,ip)
+
+
+
+
+
+
+
diff --git a/1808/CH5/EX5.19/Chapter5_Exampl19.sce b/1808/CH5/EX5.19/Chapter5_Exampl19.sce new file mode 100644 index 000000000..d1ff880fc --- /dev/null +++ b/1808/CH5/EX5.19/Chapter5_Exampl19.sce @@ -0,0 +1,25 @@ +clc
+clear
+//INPUT DATA
+va=30;//volume in m^3
+p1=1;//pressure in bar
+p2=16;//pressure in bar
+n=1.32;//index of expansion and compression
+N=320;//speed of the copressor in rpm
+t1=300;//temperature in K
+t2=312;//temperature in K
+c=0.04;//clearance
+nm=0.8;//mech efficiency in percentage
+
+//CALCULATIONS
+va1=p1*va*t2/(t1*p1);//volume in m^3/min
+nv=(1+c-c*(((p2/p1)^(1/n))));//volumetric efficiency in percentage
+vs=va1/nv;//swept volume in m^3/min
+d=((vs*4/(3.14*1.2*N*4))^(1/3))*100;//dimensions of the cylinder in cm
+l=1.2*d;//dimensions of the cylinder in cm
+ip=(n/(n-1))*p1*10^2*(va1/30)*(((p2/p1)^((n-1)/n))-1);//Power required for motor in kW
+mp=ip/(2*nm);//Power required for motor in kW
+
+//OUTPUT
+printf('(i)Dimensions of the cylinder bore %3.2f cm \n stroke %3.2f cm \n (ii)Power required for the motor is %3.2f kW',d,l,mp)
+
diff --git a/1808/CH5/EX5.2/Chapter5_Exampl2.sce b/1808/CH5/EX5.2/Chapter5_Exampl2.sce new file mode 100644 index 000000000..26979136f --- /dev/null +++ b/1808/CH5/EX5.2/Chapter5_Exampl2.sce @@ -0,0 +1,21 @@ +clc
+clear
+//INPUT DATA
+p1=1;//pressure in bar
+n=1.2;//constant
+N=100;//speed in rpm
+Rp=6;//compression ratio at constant pressure
+aps=150;//average piston speed in m/min
+ip=50;//indicated power in kW
+
+
+//CALCULATIONS
+pm=p1*(n/(n-1))*((Rp^((n-1)/n))-1);//Mean effective pressure in bars
+a=ip*60/(pm*10^2*150);//size of the cylinder in m^2
+d=sqrt(a*4/3.14);//size of the cylinder in m^2
+l=150/(2*N);//size of the cylinder in m^2
+
+//OUTPUT
+printf('(i)size of the cylinder is d %3.4f m \n l %3.2f m',d,l)
+
+
diff --git a/1808/CH5/EX5.20/Chapter5_Exampl20.sce b/1808/CH5/EX5.20/Chapter5_Exampl20.sce new file mode 100644 index 000000000..9d3a2c89e --- /dev/null +++ b/1808/CH5/EX5.20/Chapter5_Exampl20.sce @@ -0,0 +1,23 @@ +clc
+clear
+//INPUT DATA
+p3=60;//pressure in bar
+p2=7.33;//pressure in bar
+p1=1;//pressure in bar
+n=1.35;//index of expansion and compression
+d1=0.1;//diameter in m
+l1=0.1125;//stroke length in m
+t1=288;//temperature in K
+N=250;//speed in rpm
+Ns=2;//no.of stages
+t5=303;//temperature in K
+R=0.287;//gas constant
+
+//CALCULATONS
+val=(3.14*d1^2*l1*N)/4;//volume of air at atmospheric condition
+m=p1*10^2*val/(R*t1);//mass of air required in kg/min
+ipt=(n/(n-1))*p1*10^2*(val/60)*(((p2/p1)^((n-1)/n))-1)+(n/(n-1))*R*t5*(val/60)*(((p3/p2)^((n-1)/n))-1);//Power required for motor in kW
+d2=sqrt((d1*100)^2*(t5/t1)*(p1/p2));//diameter of the high pressure cylinder in cm
+
+//OUTPUT
+printf('(i)Power of the compressor is %3.3f kW \n (ii)diameter of the high pressure cylinder is %3.2f cm',ipt,d2)
diff --git a/1808/CH5/EX5.21/Chapter5_Exampl21.sce b/1808/CH5/EX5.21/Chapter5_Exampl21.sce new file mode 100644 index 000000000..621ef094a --- /dev/null +++ b/1808/CH5/EX5.21/Chapter5_Exampl21.sce @@ -0,0 +1,27 @@ +clc
+clear
+//INPUT DATA
+p1=1;//initial pressure in bar
+v1=2;//volume in m^3
+R=0.287;//gas constant
+t1=288;//temperature in K
+p2=8;//final pressure in bar
+t2=313;//final temperature in K
+d=14;//displacement in m^3/min
+T=70;//time in seconds
+
+//CALCULATIONS
+m1=p1*10^2*v1/(R*t1);//initial mass in kg
+m2=p2*10^2*v1/(R*t2);//initial mass in kg
+m=m2-m1;//weight of air compressed in kg
+va=m*R*t1/(p1*10^2);//free volume in m^3
+vs=d*T/60;//swept volume in m^3
+nv=(va/vs)*100;//Volumetric efficiency in percentage
+
+//OUTPUT
+printf('(i)Volumetric efficiency is %3.2f percentage ',nv)
+
+
+
+
+
diff --git a/1808/CH5/EX5.22/Chapter5_Exampl22.sce b/1808/CH5/EX5.22/Chapter5_Exampl22.sce new file mode 100644 index 000000000..c0344336d --- /dev/null +++ b/1808/CH5/EX5.22/Chapter5_Exampl22.sce @@ -0,0 +1,19 @@ +clc
+clear
+//INPUT DATA
+p1=1;//initial pressure in bar
+pd=30;//delivery pressure in bar
+t1=288;//temperature in K
+n=1.3;//index of copression
+
+//CALCULATIONS
+p21=sqrt(p1*pd);//Intermediate pressure in bar
+v121=(p21/p1)^(1/n);//volume ratio
+t21=t1*(p21/p1)^((n-1)/n);//temperature in K
+v212=t21/t1;//volume ratio
+v12=v121*v212;//volume ratio
+d12=sqrt(v12);//Ratio of cylinder diameters
+
+//OUTPUT
+printf('(i)Ratio of cylinder diameters is %3.3f ',d12)
+
diff --git a/1808/CH5/EX5.23/Chapter5_Exampl23.sce b/1808/CH5/EX5.23/Chapter5_Exampl23.sce new file mode 100644 index 000000000..02f732aa9 --- /dev/null +++ b/1808/CH5/EX5.23/Chapter5_Exampl23.sce @@ -0,0 +1,22 @@ +clc
+clear
+//INPUT DATA
+p1=1;//initial pressure in bar
+pd=12;//delivery pressure in bar
+R=0.287;//gas constant
+t1=310;//temperature in K
+m=1;//mass of air
+cp=1.005;//specific pressure
+n=1.4;//index of compressor
+
+//CALCULATIONS
+p2=sqrt(p1*pd);//Intermediate pressure in bar
+v1=R*t1/(p1*10^2);//Volume in m^3
+t2=t1*((p2/p1)^((n-1)/n));//temperature in K
+Qc=m*cp*(t2-t1);//Heat rejected in the intercooler per kg of air
+
+//OUTPUT
+printf('(i)Heat rejected in the intercooler per kg of air is %3.2f kW',Qc)
+
+
+
diff --git a/1808/CH5/EX5.24/Chapter5_Exampl24.sce b/1808/CH5/EX5.24/Chapter5_Exampl24.sce new file mode 100644 index 000000000..2a741646b --- /dev/null +++ b/1808/CH5/EX5.24/Chapter5_Exampl24.sce @@ -0,0 +1,21 @@ +clc
+clear
+//INPUT DATA
+t1=293;//temperature in K
+p2=10;//pressure in bar
+p1=1;//pressure in bar
+n=1.2;//index of compressor
+m=1;//mass pf air
+R=0.287;//gas constant
+g=1.4;//constant
+
+//CALCULATIONS
+t2=t1*((p2/p1)^((n-1)/n));//temperature in K
+wd=m*R*(t2-t1)/(n-1);//workdone during compression per kg of air
+Q=((g-n)/(g-1))*wd;//heat transferred during compression per kg of air
+
+//OUTPUT
+printf('(i)Temperature at the end of the compressor is %3.2f K \n (ii)workdone during compression per kg of air %3.3f kJ/kg \n (iii)heat transferred during compression per kg of air %3.2f kJ/kg',t2,wd,Q)
+
+
+
diff --git a/1808/CH5/EX5.25/Chapter5_Exampl25.sce b/1808/CH5/EX5.25/Chapter5_Exampl25.sce new file mode 100644 index 000000000..8bea75c3f --- /dev/null +++ b/1808/CH5/EX5.25/Chapter5_Exampl25.sce @@ -0,0 +1,26 @@ +clc
+clear
+//INPUT DATA
+n=1.4;//index of compression
+m=0.1436;//mass of air
+R=0.287;//gas constant
+t1=283;//temperature in K
+t2=303;//temperature in K
+p1=1;//pressure in bar
+pd=30;//delivery pressure in bar
+v1=0.1167;//volume in m^3/s
+nm=0.9;//mechanical efficiency in percentage
+
+//CALCULATIONS
+ip=(n/(n-1))*m*R*((2*sqrt(t1*t2)*((pd/p1)^((n-1)/(2*n))))-(t1+t2));//power required for a compound air compressor
+bp=ip/nm;//Brake power in kW
+
+//OUTPUT
+printf('(i)power required for a compound air compressor %3.4f kW \n (ii)Brake power is %3.2f kW',ip,bp)
+
+
+
+
+
+
+
diff --git a/1808/CH5/EX5.26/Chapter5_Exampl26.sce b/1808/CH5/EX5.26/Chapter5_Exampl26.sce new file mode 100644 index 000000000..d0fc60ebb --- /dev/null +++ b/1808/CH5/EX5.26/Chapter5_Exampl26.sce @@ -0,0 +1,27 @@ +clc
+clear
+//INPUT DATA
+k=0.05;//clearance
+p1=0.98;//initial pressure in bar
+pd=6.4;//delivery pressure in bar
+n=1.32;//index of compression and expansion
+p0=1;//initial pressure
+t1=305;//temperature in K
+v0=17;//volume in m^3
+t0=288;//teperature in K
+vs=0.02;//volume per stroke in m^3
+
+//CLACULATIONS
+nv=1+k-k*((pd/p1)^(1/n));//volumetric efficiency in percentage
+va=p0*t1*v0/(p1*t0);//volume of air handled at suction condition
+N=va/(vs*nv*2);//speed in rpm
+ip=(n/(n-1))*p1*10^2*(va/60)*((pd/p1)^((n-1)/n)-1);//Indicated power in single stage double acting cylinder in kW
+
+//OUTPUT
+printf('(i)Speed of the compressor is %3.1f rpm \n (ii)Indicated power in single stage double acting cylinder is %3.2f kW',N,ip)
+
+
+
+
+
+
diff --git a/1808/CH5/EX5.27/Chapter5_Exampl27.sce b/1808/CH5/EX5.27/Chapter5_Exampl27.sce new file mode 100644 index 000000000..08f351227 --- /dev/null +++ b/1808/CH5/EX5.27/Chapter5_Exampl27.sce @@ -0,0 +1,19 @@ +clc
+clear
+//INPUT DATA
+p1=1;//initial pressure in bar
+pd=9;//delivery pressure in bar
+n=1.3;//index of compression
+R=0.287;//gas constant
+t1=300;//temperature in K
+m=1;//mass of air
+cp=1.005;//specific pressure
+
+//CALCULATIONS
+p2=sqrt(p1*pd);//intermediate pressure in bar
+wd=2*((n/(n-1))*R*t1*(((pd/p1)^((n-1)/(2*n)))-1));//minimum work done per min
+t2=t1*((p2/p1)^((n-1)/n));//temperature K
+Qr=m*cp*(t2-t1);//heat rejected to intercooler in kJ/kg
+
+//OUTPUT
+printf('(i)minimum work done per min %3.2f kJ/kg \n (ii)%3.4f kJ/kg ',wd,Qr)
diff --git a/1808/CH5/EX5.28/Chapter5_Exampl28.sce b/1808/CH5/EX5.28/Chapter5_Exampl28.sce new file mode 100644 index 000000000..5cd923c56 --- /dev/null +++ b/1808/CH5/EX5.28/Chapter5_Exampl28.sce @@ -0,0 +1,24 @@ +clc
+clear
+//INPUT DATA
+k=0.05;//clearance
+p1=1;//initial pressure in bar
+pd=5.5;//delivery pressure in bar
+n=1.3;//index of compression
+R=0.287;//gas constant
+N=500;//Speed in rpm
+d=0.2;//diameter in m
+t1=293;//temperature in K
+
+//CALCULATIONS
+nv=1+k-k*((pd/p1)^(1/n));//volumetric efficiency in percentage
+va=nv*(3.14*d^3*1.5*N)/4;//Volume of air in m^3/min
+m=p1*va/(R*t1);//mass of air in kg/min
+ip=(n/(n-1))*p1*10^2*(va/60)*((pd/p1)^((n-1)/n)-1);//Power required to run the compressor in kW
+
+//OUTPUT
+printf('(i)Volumetric efficiency %3.4f percentage \n (ii)Power required to run the compressor is %3.2f kW',nv,ip)
+
+
+
+
diff --git a/1808/CH5/EX5.29/Chapter5_Exampl29.sce b/1808/CH5/EX5.29/Chapter5_Exampl29.sce new file mode 100644 index 000000000..7660d51e0 --- /dev/null +++ b/1808/CH5/EX5.29/Chapter5_Exampl29.sce @@ -0,0 +1,41 @@ +clc
+clear
+//INPUT DATA
+p1=1;//initial pressure in bar
+pd=16;//delivery pressure in bar
+n=1.25;//index of compression
+m=10;//mass flow rate
+R=0.287;//gas constant
+t1=288;//temperature in K
+cp=1.005;//specific pressure
+k1=0.04;//clearance retio
+k2=0.06;//clearance ratio
+N=400;//speed in rpm
+g=1.4;//constant
+
+
+//CALCULATIONS
+p2=sqrt(p1*pd);//intermediate pressure in bar
+ipm=2*(n/(n-1))*(m/60)*R*t1*((p2/p1)^((n-1)/n)-1);//power required in kW
+pi=(m*R*t1/60)*log(pd/p1);//isothermal power
+niso=(pi/ipm)*100;//isothermal efficiency in percentage
+va=m*R*t1/(p1*10^2);//free air delivered in m^3/min
+t2=t1*(p2/p1)^((n-1)/n);//temperature in K
+Qr=(m/60)*cp*(t2-t1);//heat rejected in intercooler in kW
+nvl=1+k1-k1*((p2/p1)^(1/(n*2)));//volumetric efficiency in percentage
+vsl=va/(N*nvl);//swept volume in m^3
+nv2=(1+k2-(k2*((pd/p1)^(1/(n*2)))))*100;//volumetric efficiency in percentage
+vsh=va/(2*((pd/p1)*N*nv2)^(1/2));//swept volume
+Ql=(g-n)*m*R*(t2-t1)/((g-1)*(n-1));//heat transferred in LP
+Qh=(g-n)*m*R*(t2-t1)/((g-1)*(n-1));//heat transferred in HP
+t6=t1*(pd/p1)^((n-1)/n);//temperature in K
+Qi=(m/60)*cp*(t2-t1);//Heat trnsferred in intercooler
+
+//OUTPUT
+printf('(i)The power required is %3.3f kW \n (ii)The isothermal efficiency is %3.3f percentage \n (iii)The free air delivered is %3.4f m^3/min \n (iv)The heat rejected in intercooler is %3.3f kW \n (v)swept volume is %3.5f m^3 \n swept volume is %3.5f m^3 \n (vi)net heat transferred in intercooler is %3.3f kW',ipm,niso,va,Qr,vsl,vsh,Qi)
+
+
+
+
+
+
diff --git a/1808/CH5/EX5.3/Chapter5_Exampl3.sce b/1808/CH5/EX5.3/Chapter5_Exampl3.sce new file mode 100644 index 000000000..0dbacbe00 --- /dev/null +++ b/1808/CH5/EX5.3/Chapter5_Exampl3.sce @@ -0,0 +1,37 @@ +clc
+clear
+//INPUT DATA
+t1=293;//temperature in K
+p1=1;//pressure in bar
+p2=8;//pressure in bar
+v1=80;//volume in m^3
+g=1.4;//for isentropic compression
+n=1.25;//Adiabatic compression
+
+//CALCULATIONS
+
+//Isothermal compression
+v2=p1*v1/p2;//volume in m^3
+wn=p1*10^2*v1*log(p2/p1);//net work done in kJ/min
+P=wn/60;//Power required in kW
+
+//Adiabatic compression
+v121=(p2/p1)^(1/g);//volume in m^3/min
+v21=v1/v121;//volume in m^3/min
+t211=t1*(p2/v121);//temperature at the end of the compression
+wn1=(g/(g-1))*p1*10^2*v1*(((p2/p1)^((g-1)/g))-1);//net work done in kJ
+P1=wn1/60;//Power in kW
+
+//Polytropic process
+v12=(p2/p1)^(1/n);//volume in m^3/min
+v22=v1/v12;//volume in m^3/min
+t2=t1*(p2/v12);//temperature in K
+wn2=(n/(n-1))*p1*10^2*v1*(((p2/p1)^((n-1)/n))-1);//net work done in kJ
+P2=wn2/60;//power required in kW
+Qc=((g-n)/(g-1))*P2;//Heat transferred in kW
+
+//OUTPUT
+printf('(a)Isothermal compression \n temperature at the end of the compression is 293K \n net work done is %3.2f kJ/min \n Power required is %3.3f kW \n ',wn,P)
+printf('(b)Adiabatic compression \n temperature at the end of the compression is %3.2f K \n net work done is %3.2f kJ/min \n Power required is %3.3f kW \n ',t211,wn1,P1)
+printf('(c)Polytropic compression \n temperature at the end of the compression is %3.2f K \n net work done is %3.2f kJ/min \n Power required is %3.3f kW \n Heat rejected is %3.2f kW\n ',t2,wn2,P2,Qc)
+
diff --git a/1808/CH5/EX5.30/Chapter5_Exampl30.sce b/1808/CH5/EX5.30/Chapter5_Exampl30.sce new file mode 100644 index 000000000..4b06fe769 --- /dev/null +++ b/1808/CH5/EX5.30/Chapter5_Exampl30.sce @@ -0,0 +1,25 @@ +clc
+clear
+//INPUT DATA
+S=180;//Piston speed in rpm
+N=240;//speed in rpm
+d=0.2;//bore in m
+p1=1;//pressure in bar
+p2=5.67;//compressed pressure in bar
+R=0.287;//gas constant
+t1=288;//entry temperature in K
+n=1.3;//index of compression
+cp=1.005;//specific pressure
+
+//CALCULATIONS
+l=S/(2*N);//Piston speed in m
+vs=(3.14*d^2*l*N)/4;//swept volume in m^3/min
+m=p1*10^2*vs/(R*t1);//mass flow rate in kg/min
+t2=t1*((p2/p1)^((n-1)/n));//exit temperature in K
+wd=(n/(n-1))*(m/60)*R*t1*(((p2/p1)^((n-1)/n))-1);//rate of work done
+wdis=(m/60)*R*t1*log(p2/p1);//Rate of work done by isothermal compression in kW
+
+//OUTPUT
+printf('(i)Mass flow rate %3.2f kg/min \n (ii)rate of work done %3.1f kW \n exit temperature is %3.1f K \n (iii)Rate of work done by isothermal compression is %3.4f kW',m,wd,t2,wdis)
+
+
diff --git a/1808/CH5/EX5.31/Chapter5_Exampl31.sce b/1808/CH5/EX5.31/Chapter5_Exampl31.sce new file mode 100644 index 000000000..1804109af --- /dev/null +++ b/1808/CH5/EX5.31/Chapter5_Exampl31.sce @@ -0,0 +1,23 @@ +clc
+clear
+//INPUT DATA
+d=0.1;//bore in m
+vc=10*10^-5;//clearance volume
+p1=0.95;//suction pressure
+p2=8;//discharge pressure
+n=1.3;//index of compression
+N=400;//Speed in rpm
+t1=303;//temperature in K
+to=293;//temperature in K
+po=1;//pressure in bar
+
+//CALCULATIONS
+vs=(3.14*(d^3)*1.5)/4;//swept volume in m^3
+k=vc/vs;//clearance ratio
+nv=1+k-(k*((p2/p1)^(1/n)));//volumetric efficiency
+va=vs*nv*N;//volume of air delivered in m^3/min
+vo=p1*va*to/(po*t1);//volume of air delivered in m^3/min
+pm=((n/(n-1))*p1*(va/400)*(((p2/p1)^((n-1)/n))-1))/(vs);//mean effective pressure in bar
+disp(vo)
+//OUTPUT
+printf('(i)The volume of air delivered is %3.4f m^3/min \n (ii)mean effective pressure is %3.3f bar \n ',vo,pm)
diff --git a/1808/CH5/EX5.32/Chapter5_Exampl32.sce b/1808/CH5/EX5.32/Chapter5_Exampl32.sce new file mode 100644 index 000000000..0bec762df --- /dev/null +++ b/1808/CH5/EX5.32/Chapter5_Exampl32.sce @@ -0,0 +1,22 @@ +clc
+clear
+//INPUT DATA
+v1=10;//volume of air handled in m^3/min
+n=1.4;//index of compression
+m=1;//mass of air
+R=0.287;//gas constant
+t1=293;//initial temperature in K
+p1=1;//pressure in bar
+P2=2;//discharge presuure in bar
+t21=298;//temperature in K
+pd=6;//discharge pressure
+
+//CALCULATIONS
+wd=(n/(n-1))*m*R*t1*(((P2/p1)^((n-1)/n))-1)+(n/(n-1))*R*t21*(((pd/P2)^((n-1)/n))-1);//work done in kJ/kg
+m=p1*10^2*v1/(R*t1);//mass flow rate in kg/min
+ip1=wd*(m/60);//indicated power in kW
+p2=sqrt(p1*pd);//Receiver pressure for best efficiency
+ip2=2*(n/(n-1))*(m/60)*R*t1*(((pd/p1)^((n-1)/(2*n)))-1);//Power required for optimum conditions
+
+//OUTPUT
+printf('(i)power required is %3.3f kW \n (ii)Receiver pressure for the best efficiency %3.4f bar \n (iii)Power required for optimum conditions is %3.3f kW ',ip1,p2,ip2)
diff --git a/1808/CH5/EX5.33/Chapter5_Exampl33.sce b/1808/CH5/EX5.33/Chapter5_Exampl33.sce new file mode 100644 index 000000000..2b4307c83 --- /dev/null +++ b/1808/CH5/EX5.33/Chapter5_Exampl33.sce @@ -0,0 +1,23 @@ +clc
+clear
+//INPUT DATA
+p1=0.9;//initial pressure in bar
+pd=18;//delivery pressure in bar
+n=1.3;//index of compression
+R=0.287;//gas constant
+t1=303;//temperature in K
+t0=290;//temperature in K
+p11=1;//pressure in bar
+
+//CALCULATIONS
+p2=sqrt(p1*pd);//intermediate pressure in bar
+v0x=(p1/1)*(t0/t1)*0.891743;//volume
+nva=(v0x);//volume of air reduced to atmospheric conditions
+wd=2*((n/(n-1)))*R*t1*(((pd/p1)^((n-1)/(2*n)))-1);//work done required per kg of air delivered in kJ/kg
+wdis=R*t0*log(pd/p11);//isothermal work done in kJ/kg
+niso=(wdis/wd);//isothermal efficiency in percentage
+
+//OUTPUT
+printf('(i)Volumetric efficiency referred to atm conditions %3.5f \n (ii)The work done required to deliver air is %3.2f kJ/kg \n (iii)isothermal efficiency is %3.3f percentage',nva,wd,niso)
+
+
diff --git a/1808/CH5/EX5.34/Chapter5_Exampl34.sce b/1808/CH5/EX5.34/Chapter5_Exampl34.sce new file mode 100644 index 000000000..3875b5ecd --- /dev/null +++ b/1808/CH5/EX5.34/Chapter5_Exampl34.sce @@ -0,0 +1,28 @@ +clc
+clear
+//INPUT DATA
+R=0.287;//gas constant
+d=0.3;//diameter in m
+l=0.4;//stroke in m
+N=100;//speed in rpm
+p1=1;//pressure in bar
+p2=5;//pressure in bar
+g=1.4;//constant
+n=1.2;//index of copression
+
+//CALCULATIONS
+vs=(3.14*d^2*l*N)/4;//swept volume in m^2/min
+ipis=p1*10^2*(vs/60)*log(p2/p1);//isothermal power required in kW
+niso=(ipis/ipis)*100;//isothermal efficiency in percentage
+pm=ipis/(vs*100);//mean effective pressure in kN/m^2
+wd=(n/(n-1))*p1*10^2*(vs/60)*(((p2/p1)^((n-1)/n))-1);//polytropic work done
+niso1=(ipis/wd)*100;//isothermal efficiency in percentage in polytropic process
+pm1=wd*60/(vs*100);//mean effective pressure in bar
+ipa=(g/(g-1))*p1*10^2*(vs/60)*(((p2/p1)^((g-1)/g))-1);//Adiabatic work done
+niso2=(ipis/ipa)*100;//adiabatic isothermal efficiency in percentage
+pm2=ipa*60/(vs*100);//mean effective pressure in bar
+
+//OUTPUT
+printf('(i)Isothermal \n Isothermal efficiency is %3.1f \n mean effective pressure is %3.4f bar \n (ii)ploytropic process \n Isothermal efficiency %3.2f percentage \n mean effective pressure is %3.4f bar \n (iii)Adiabatic process \n Isothermal efficiency %3.2f percentage \n mean effective pressure is %3.4f bar \n ',niso,pm,niso1,pm1,niso2,pm2)
+
+
diff --git a/1808/CH5/EX5.35/Chapter5_Exampl35.sce b/1808/CH5/EX5.35/Chapter5_Exampl35.sce new file mode 100644 index 000000000..2714794d9 --- /dev/null +++ b/1808/CH5/EX5.35/Chapter5_Exampl35.sce @@ -0,0 +1,25 @@ +clc
+clear
+//INPUT DATA
+p0=1;//suction pressure in bar
+p1=1;//pressure in bar
+p2=6;//delivery pressure in bar
+v0=5;//volume in m^3/min
+t0=288;//suction temperature in K
+t1=300;//initial temperature in K
+k=0.05;//Clearance
+n=1.3;//index of compression
+N=150;//speed in rpm
+
+//CALCULATIONS
+va=(p0/p1)*(t1/t0)*v0;//volume of air delivered in m^3/min
+nv=1+k-k*((p2/p1)^(1/n));//volumetric efficiency in percentage
+vs=va/nv;//stroke volume in m^3/min
+vss=vs/N;//stroke volume per stroke in m^3
+d=(vss*4/(3.14*1.25))^(1/3);//diameter in m
+l=1.25*d;//length in m
+ip=(n/(n-1))*p1*10^2*(va/60)*(((p2/p1)^((n-1)/n))-1);//power required to run the compressor
+
+//OUTPUT
+printf('(i)volumetric efficiency is %3.4f percentage \n (ii)stroke volume of air taken in per stroke is %3.5f m^3 \n (iii)Dimensions of the cylinder stroke %3.2f m \nbore %3.2f m \n (iv)power required to run the compressor is %3.3f kW',nv,vss,l,d,ip)
+
diff --git a/1808/CH5/EX5.4/Chapter5_Exampl4.sce b/1808/CH5/EX5.4/Chapter5_Exampl4.sce new file mode 100644 index 000000000..79f9596e5 --- /dev/null +++ b/1808/CH5/EX5.4/Chapter5_Exampl4.sce @@ -0,0 +1,28 @@ +clc
+clear
+//INPUT DATA
+n=1.35;//for cylinders
+p1=1;//pressure in bar
+v1=1;//volume in m^3
+p2=7;//pressure in bar
+nm=0.85;//mechanical efficiency in percentage
+nt=0.9;//Turbine efficiency in percentage
+N=300;//speed in rpm
+
+//CALCULATIONS
+//(a)single acting cylinder
+ip1=((n/(n-1))*p1*10^2*v1*(((p2/p1)^((n-1)/n))-1))/60;//indicated power in kW
+bp1=ip1/nm;//brake power in kW
+mp1=bp1/nt;//motor power in kW
+d1=((v1*4/(1.5*N*3.14))^(1/3))*100;//cylinder bore in single acting cylinder in cm
+l1=(1.5)*d1;//stroke in cm
+
+//Double acting cylinder
+d2=((v1*4/(1.5*N*2*3.14))^(1/3))*100;//cylinder bore in double acting cylinder
+l2=1.5*d2;//stroke in cm
+
+//OUTPUT
+printf('(a)Single acting cylinder \n (i)Indicated power is %3.3f kW \n (ii)Power input to the compressor %3.3f kW \n (iii) cylinder bore in single acting cylinder is %3.4f cm \n stroke is %3.2f cm \n',ip1,mp1,d1,l1)
+
+printf('(a)Double acting cylinder \n (i)Indicated power is %3.3f kW \n (ii)Power input to the compressor %3.3f kW \n (iii) cylinder bore in double acting cylinder is %3.4f cm \n stroke is %3.2f cm',ip1,mp1,d2,l2)
+
diff --git a/1808/CH5/EX5.5/Chapter5_Exampl5.sce b/1808/CH5/EX5.5/Chapter5_Exampl5.sce new file mode 100644 index 000000000..7f784992c --- /dev/null +++ b/1808/CH5/EX5.5/Chapter5_Exampl5.sce @@ -0,0 +1,30 @@ +clc
+clear
+//INPUT DATA
+fad=14;//free air delivered in m^3/min
+N=300;//speed in rpm
+p2=7;//delivery pressure in bar
+p1=1;//pressure in bar
+n=1.3;//index of compression and expansion
+t1=288;//temperature in K
+
+//CALCULATIONS
+
+//Without clearance volume
+vs=fad/(N*2);//swept volume of the cylinder in m^3
+t2=t1*(p2/p1)^((n-1)/n);//Delivery temperature in K
+ip=(n/(n-1))*p1*10^2*(fad/60)*(((p2/p1)^((n-1)/n))-1);//indicated power in kW
+d=((vs*4/(3.14*1.5))^(1/3))*100;//bore of the cylinder in cm
+l=1.5*d;//stroke in cm
+
+//with clearance volume
+vs1=vs/(1.05-vs);//swept volume with clearence volume in m^3
+t2=t1*(p2/p1)^((n-1)/n);//Delivery temperature in K
+nv=(vs/vs1)*100;//volumetric efficiency in percentage
+d1=((vs1*4/(3.14*1.5))^(1/3))*100;//bore of the cylinder in cm
+l1=1.5*d1;//stroke in cm
+//OUTPUT
+printf('(a)Without clearance volume \n (i)swept volume of the cylinder is %3.4f m^3 \n (ii)The delivery temperature is %3.4f K \n (iii)Indicated power is %3.3f kW \n (iv)volumetric efficiency is 100percentage \n (v)bore of the cylinder is %3.2f cm \n stroke %3.4f cm \n',vs,t2,ip,d,l)
+
+printf('(a)With clearance volume \n (i)swept volume of the cylinder is %3.4f m^3 \n (ii)The delivery temperature is %3.4f K \n (iii)Indicated power is %3.3f kW \n (iv)volumetric efficiency is %3.2f percentage \n (v)bore of the cylinder is %3.2f cm \n stroke %3.4f cm \n',vs1,t2,ip,nv,d1,l1)
+
diff --git a/1808/CH5/EX5.6/Chapter5_Exampl6.sce b/1808/CH5/EX5.6/Chapter5_Exampl6.sce new file mode 100644 index 000000000..c263c45c8 --- /dev/null +++ b/1808/CH5/EX5.6/Chapter5_Exampl6.sce @@ -0,0 +1,28 @@ +clc
+clear
+//INPUT DATA
+vs=0.015;//swept volume in m^3
+vc=0.0008;//clearence volume in m^3
+p3=500;//discharging pressure
+p1=100;//air pressure in kPa
+m=1.4;//isentropic expansion constant
+n=1.3;//polytropic index constant
+
+
+//CALCULATIONS
+v1=vs+vc;//volume in m^3
+v4=vc*((p3/p1)^(1/m));//volume in m^3
+wn=((n/(n-1))*p1*v1*(((p3/p1)^((n-1)/n))-1))-((m/(m-1))*p1*v4*(((p3/p1)^((m-1)/m))-1));//net work done in kJ
+v41=vc*(p3/p1)^(1/n);//volume of absorbing system in m^3
+v14=vs-v41;//volume in m^3
+wn1=(n/(n-1))*p1*(v14)*((((p3/p1)^((n-1)/n))-1));//net work done in kJ
+nd=((wn-wn1)/wn)*100;//percentage in difference in work done
+
+//OUTPUT
+printf('(i)Net cycle work is %3.4f kJ \n (ii)Error evolved is %3.4f ',wn,nd)
+
+
+0
+
+
+
diff --git a/1808/CH5/EX5.7/Chapter5_Exampl7.sce b/1808/CH5/EX5.7/Chapter5_Exampl7.sce new file mode 100644 index 000000000..38a44ebf5 --- /dev/null +++ b/1808/CH5/EX5.7/Chapter5_Exampl7.sce @@ -0,0 +1,32 @@ +clc
+clear
+//INPUT DATA
+pa=1;//ambient pressure in bar
+ta=15;//temperature in Degree C
+ps1=0.98;//ambient pressure in bar
+ts1=30;//temperature in Degree C
+c=0.04;//clearance
+N=500;//speed in rpm
+p1=1;//ambient pressure
+p2=5;//discharge pressure
+n=1.3;//for cylinders
+
+//CALCULATIONS
+
+//Suction and ambient conditions are same
+vs=0.04*2*N;//swept volume in m^3/min
+nv=1+c-(c*(p2/p1)^(1/n));//volumetric efficiency in percentage
+v14=nv*(vs)/60;//volume in m^3/sec
+ip=(n/(n-1))*p1*100*(v14)*((p2/p1)^((n-1)/n)-1);//indicated power in kJ/min
+
+//Suction and ambient conditions are different
+nv1=1+c-(c*(p2/ps1)^(1/n));//volumetric efficiency in percentage
+v141=nv1*(vs)/60;//volume in m^3/sec
+ip1=(n/(n-1))*ps1*100*(v141)*(((p2/ps1)^((n-1)/n))-1);//indicated power in kJ/min
+vamb=p1*(ta+273)*(v141)/(pa*(ts1+273));//Air discharged in m^3/s
+
+//OUTPUT
+printf('(a)Suction and ambient conditions are same \n (i)Indicated power %3.2f kW \n (ii)air discharged is %3.4f m^3/s \n ',ip,v14)
+printf('(a)Suction and ambient conditions are different \n (i)Indicated power %3.2f kW \n (ii)air discharged is %3.4f m^3/s \n ',ip1,v141)
+
+
diff --git a/1808/CH5/EX5.8/Chapter5_Exampl8.sce b/1808/CH5/EX5.8/Chapter5_Exampl8.sce new file mode 100644 index 000000000..9d29154c6 --- /dev/null +++ b/1808/CH5/EX5.8/Chapter5_Exampl8.sce @@ -0,0 +1,30 @@ +clc
+clear
+//INPUT DATA
+d=0.3;//bore length in m
+l=0.4;//stroke length in m
+N=300;//speed in rpm
+g=1.4;//constant
+n=1.25;//adiabatic compression constant
+p1=1;//suction pressure
+pd=5;//delivery pressure
+m=1.5;//adiabatic constant
+
+//CALCULATIONS
+vs=(3.14*(d)^2*l*N)/4;//Volume of air compressed per min
+pm=p1*log(pd/p1);//Mean effective pressure in bar
+ip=p1*10^2*(vs/60)*log(pd/p1);//indicated power in kW
+pm1=p1*(n/(n-1))*((((pd/p1)^((n-1)/n)))-1);//Mean effective pressure in bar
+ip1=pm1*vs*100/60;//indicated power in kW
+nso1=(ip/ip1)*100;//Isothermal efficiency in percentage
+pm2=p1*(g/(g-1))*((((pd/p1)^((g-1)/g)))-1);//Mean effective pressure in bar
+ip2=pm2*vs*100/60;//indicated power in kW
+nso2=(ip/ip2)*100;//Isothermal efficiency in percentage
+pm3=p1*(m/(m-1))*((((pd/p1)^((m-1)/m)))-1);//Mean effective pressure in bar
+ip3=pm3*vs*100/60;//indicated power in kW
+nso3=(ip/ip3)*100;//Isothermal efficiency in percentage
+nad=(ip2/ip3)*100;//adiabatic efficiency in percentage
+
+//OUTPUT
+printf('(i)isothermal compression \n Indicated mean effective pressure %3.4f bar \n Ideal power %3.3f kW \n (ii)compression process according to to pv^1.25 \n Indicated mean effective pressure %3.4f bar \n Ideal power %3.3f kW \n isothermal efficiency is %3.3f percentage \n (iii)Compression is reversible adiabatic \n Indicated mean effective pressure %3.4f bar \n Ideal power %3.3f kW \n isothermal efficiency is %3.3f percentage \n (iv)compression is irreversible adiabatic \n Indicated mean effective pressure %3.4f bar \n Ideal power %3.3f kW \n isothermal efficiency is %3.3f percentage \n adiabatic efficiency is %3.3f percentage ',pm,ip,pm1,ip1,nso1,pm2,ip2,nso2,pm3,ip3,nso3,nad)
+
diff --git a/1808/CH5/EX5.9/Chapter5_Exampl9.sce b/1808/CH5/EX5.9/Chapter5_Exampl9.sce new file mode 100644 index 000000000..07249f6ec --- /dev/null +++ b/1808/CH5/EX5.9/Chapter5_Exampl9.sce @@ -0,0 +1,37 @@ +clc
+clear
+//INPUT DATA
+p1=1;//ambient pressure in bar
+t1=15;//ambient temperature in Degree C
+ps=0.98;//suction pressure in bar
+pd=7;//Delivery pressure in bar
+ts=30;//suction temperature in Degree C
+x=1.25;//ratio of l,d
+c=1/15;//clearance
+va=100;//volume in m^3/min
+n=1.3;//for cylinders
+
+//CALCULATIONS
+
+//(a)If ambient and suction conditions are same
+nv1=(1+c-c*((pd/p1)^(1/n)))*100;//volumetric efficiency in percentage
+vs1=va/nv1;//swept volume in m^3/min
+d1=sqrt(0.260146*4/3.14);//bore length in m
+l1=x*d1;//stroke in m
+N1=500/(2*l1);//Speed in rpm
+ip1=(n/(n-1))*p1*10^2*(va/60)*((pd/p1)^((n-1)/n)-1);//indicated power in kW
+
+//(b)If ambient and suction conditions are different
+nv2=(1+c-c*((pd/ps)^(1/n)))*100;//volumetric efficiency in percentage
+v14=p1*va*(ts+273)/(ps*(t1+273));//volume of air delivered in m^3/min
+vs2=(v14/nv2);//swept volume in m^3/min
+d2=sqrt(vs2*4/(3.14*500));//bore length in m
+l2=x*d2;//stroke length in m
+N2=500/(2*l2);//speed in rpm
+ip2=(n/(n-1))*ps*10^2*(v14/60)*((pd/ps)^((n-1)/n)-1);//indicated power in kW
+
+//OUTPUT
+printf('(a)If ambient and suction conditions are same \n (i)volumetric efficiency %3.3f percentage \n (ii)Bore %3.4f m \n stroke %3.4f m \n speed %3.1f rpm \n (iii)Indicated power is %3.2f kW \n (b)If ambient and suction conditions are different \n (i)volumetric efficiency %3.3f percentage \n (ii)Bore %3.4f m \n stroke %3.4f m \n speed %3.1f rpm \n (iii)Indicated power is %3.2f kW \n ',nv1,d1,l1,N1,ip1,nv2,d2,l2,N2,ip2)
+
+
+
|