summaryrefslogtreecommitdiff
path: root/1775/CH3
diff options
context:
space:
mode:
Diffstat (limited to '1775/CH3')
-rwxr-xr-x1775/CH3/EX3.1/Chapter3_Example1.sce32
-rwxr-xr-x1775/CH3/EX3.2/Chapter3_Example2.sce27
-rwxr-xr-x1775/CH3/EX3.3/Chapter3_Example3.sce32
-rwxr-xr-x1775/CH3/EX3.4/Chapter3_Example4.sce42
-rwxr-xr-x1775/CH3/EX3.5/Chapter3_Example5.sce42
-rwxr-xr-x1775/CH3/EX3.6/Chapter3_Example6.sce32
-rwxr-xr-x1775/CH3/EX3.7/Chapter3_Example7.sce35
7 files changed, 242 insertions, 0 deletions
diff --git a/1775/CH3/EX3.1/Chapter3_Example1.sce b/1775/CH3/EX3.1/Chapter3_Example1.sce
new file mode 100755
index 000000000..e8b7372af
--- /dev/null
+++ b/1775/CH3/EX3.1/Chapter3_Example1.sce
@@ -0,0 +1,32 @@
+//Chapter-3, Illustration 1, Page 139
+//Title: Internal Combustion Engines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+d=200;//diameter of cylinder in mm
+L=300;//stroke of cylinder in mm
+Vc=1.73;//Clearance volume in litres
+imep=650;//indicated mean effective pressure in kN/(m^2)
+g=6.2;//gas consumption in (m^3)/h
+CV=38.5;//Calorific value in MJ/(m^3)
+y=1.4;//Ratio of specific heats
+N=150;//No. of firing cycles per minute
+
+//CALCULATIONS
+Vs=((3.1415/4)*(d^2)*L)*(10^-6);//Stroke volume in litres
+Vt=Vs+Vc;//Total volume in litres
+rv=(Vt/Vc);//Compression ratio
+n=(1-(1/rv^(y-1)))*100;//Air standard efficiency
+IP=imep*(Vs*10^-3)*(N/60);//Indicated power in kW
+F=(g*CV*1000)/3600;//Fuel energy input in kW
+nT=(IP/F)*100;//Indicated thermal efficiency
+
+//OUTPUT
+mprintf('Air Standard Efficiency is %3.1f percent \n Indicated Power is %3.1f kW \n Indicated thermal efficiency is %3.0f percent',n,IP,nT)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH3/EX3.2/Chapter3_Example2.sce b/1775/CH3/EX3.2/Chapter3_Example2.sce
new file mode 100755
index 000000000..5b02d32e1
--- /dev/null
+++ b/1775/CH3/EX3.2/Chapter3_Example2.sce
@@ -0,0 +1,27 @@
+//Chapter-3, Illustration 2, Page 140
+//Title: Internal Combustion Engines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+Vs=0.0008;//Swept volume in m^3
+Vc=0.00015;//Clearance volume in m^3
+CV=38;//Calorific value in MJ/(m^3)
+v=0.45;//volume in m^3
+IP=81.5;//Indicated power in kW
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+rv=(Vs+Vc)/Vc;//Compression ratio
+n=(1-(1/rv^(y-1)));//Air standard efficiency
+Ps=(v*CV*1000)/60;//Power supplied in kW
+nact=IP/Ps;//Actual efficiency
+nr=(nact/n)*100;//Relative efficiency
+
+//OUTPUT
+mprintf('Relative Efficiency is %3.2f percent',nr)
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH3/EX3.3/Chapter3_Example3.sce b/1775/CH3/EX3.3/Chapter3_Example3.sce
new file mode 100755
index 000000000..d38421706
--- /dev/null
+++ b/1775/CH3/EX3.3/Chapter3_Example3.sce
@@ -0,0 +1,32 @@
+//Chapter-3, Illustration 3, Page 141
+//Title: Internal Combustion Engines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+n=6;//No. of cylinders
+d=0.61;//Diameter in m
+L=1.25;//Stroke in m
+N=2;//No.of revolutions per second
+m=340;//mass of fuel oil in kg
+CV=44200;//Calorific value in kJ/kg
+T=108;//Torque in kN-m
+imep=775;//Indicated mean efective pressure in kN/(m^2)
+
+//CALCULATIONS
+IP=(imep*L*3.1415*(d^2)*N)/(8);//Indicated power in kW
+TotalIP=(n*IP);//Total indicated power in kW
+BP=(2*3.1415*N*T);//Brake power in kW
+PI=(m*CV)/3600;//Power input in kW
+nB=(BP/PI)*100;//Brake thermal efficiency
+bmep=(BP*8)/(n*L*3.1415*(d^2)*2);//Brake mean effective pressure in kN/(m^2)
+nM=(BP/TotalIP)*100;//Mechanical efficiency
+bsfc=m/BP;//Brake specific fuel consumption in kg/kWh
+
+//OUTPUT
+mprintf('Total Indicated Power is %3.1f kW \n Brake Power is %3.1f kW \n Brake thermal efficiency is %3.1f percent \n Brake mean effective pressure is %3.1f kN/(m^2) \n Mechanical efficiency is %3.1f percent \n Brake specific fuel consumption is %3.3f kg/kW.h',TotalIP,BP,nB,bmep,nM,bsfc)
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH3/EX3.4/Chapter3_Example4.sce b/1775/CH3/EX3.4/Chapter3_Example4.sce
new file mode 100755
index 000000000..0e8ea93ce
--- /dev/null
+++ b/1775/CH3/EX3.4/Chapter3_Example4.sce
@@ -0,0 +1,42 @@
+//Chapter-3, Illustration 4, Page 142
+//Title: Internal Combustion Engines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+Hm=21;//Mean height of indicator diagram in mm
+isn=27;//indicator spring number in kN/(m^2)/mm
+Vs=14;//Swept volume in litres
+N=6.6;//Speed of engine in rev/s
+Pe=77;//Effective brake load in kg
+Re=0.7;//Effective vrake radius in m
+mf=0.002;//fuel consumed in kg/s
+CV=44000;//Calorific value of fuel in kJ/kg
+mc=0.15;//cooling water circulation in kg/s
+Ti=311;//cooling water inlet temperature in K
+To=344;//cooling water outlet temperature in K
+C=4.18;//specific heat capacity of water in kJ/kg-K
+Ee=33.6;//Energy to exhaust gases in kJ/s
+g=9.81;//Acceleration due to geravity in m/(s^2)
+
+//CALCULATIONS
+imep=isn*Hm;//Indicated mean efective pressure in kN/(m^2)
+IP=(imep*Vs*N)/(2000);//Indicated Power in kW
+BP=(2*3.1415*N*g*Pe*Re)/1000;//Brake Power in kW
+nM=(BP/IP)*100;//Mechanical efficiency
+Ef=mf*CV;//Eneergy from fuel in kJ/s
+Ec=mc*C*(To-Ti);//Energy to cooling water in kJ/s
+Es=Ef-(BP+Ec+Ee);//Energy to surroundings in kJ/s
+p=(BP*100)/Ef;//Energy to BP in %
+q=(Ec*100)/Ef;//Energy to coolant in %
+r=(Ee*100)/Ef;//Energy to exhaust in %
+w=(Es*100)/Ef;//Energy to surroundings in %
+
+//OUTPUT
+mprintf('Indicated Power is %3.1f kW \n Brake Power is %3.0f kW \n Mechanical Efficiency is %3.0f percent \n \nENERGY BALANCE kJ/s Percentage \nEnergy from fuel %3.0f 100\nEnergy to BP %3.0f %3.0f\nEnergy to coolant %3.01f %3.1f\nEnergy to exhaust %3.1f %3.1f\nEnergy to surroundings, etc %3.1f %3.1f',IP,BP,nM,Ef,BP,p,Ec,q,Ee,r,Es,w)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH3/EX3.5/Chapter3_Example5.sce b/1775/CH3/EX3.5/Chapter3_Example5.sce
new file mode 100755
index 000000000..a9ac95449
--- /dev/null
+++ b/1775/CH3/EX3.5/Chapter3_Example5.sce
@@ -0,0 +1,42 @@
+//Chapter-3, Illustration 5, Page 143
+//Title: Internal Combustion Engines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+t=30;//duration of trial in minutes
+N=1750;//speed in rpm
+T=330;//brake torque in Nm
+m=9.35;//mass of fuel in kg
+CV=42300;//Calorific value in kJ/kg
+mj=483;//jacket cooling water circulation in kg
+Ti=290;//inlet temperature in K
+T0=350;//outlet temperature in K
+ma=182;//air consumption in kg
+Te=759;//exhaust temperature in K
+Ta=256;//atmospheric temperature in K
+nM=0.83;//Mechanical efficiency
+ms=1.25;//mean specific heat capacity of exhaust gas in kJ/kg-K
+Cw=4.18;//specific heat capacity of water in kJ/kg-K
+
+//CALCULATIONS
+BP=(2*3.1415*T*N)/(60*1000);//Brake power in kW
+sfc=(m*2)/BP;//specific fuel consumption in kg/kWh
+IP=BP/nM;//Indicated power in kW
+nIT=((IP*3600)/(m*CV*2))*100;//Indicated thermal efficiency
+Ef=(m*CV)/t;//Eneergy from fuel in kJ/min
+EBP=BP*60;//Energy to BP in kJ/min
+Ec=(mj*Cw*(T0-Ti))/t;//Energy to cooling water in kJ/min
+Ee=((ma+m)*ms*(Te-Ti))/30;//Energy to exhaust in kJ/min
+Es=Ef-(EBP+Ec+Ee);//Energy to surroundings in kJ/min
+
+//OUTPUT
+mprintf('Brake power is %3.1f kW \n Specific fuel consumption is %3.3f kg/kWh \n Indicated thermal efficiency is %3.1f percent \n Energy from fuel is %3.0f kJ/min \n Energy to BP is %3.0f kJ/min \n Energy to cooling water is %3.0f kJ/min \n Energy to exhaust is %3.0f kJ/min \n Energy to surroundings is %3.0f kJ/min',BP,sfc,nIT,Ef,EBP,Ec,Ee,Es)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH3/EX3.6/Chapter3_Example6.sce b/1775/CH3/EX3.6/Chapter3_Example6.sce
new file mode 100755
index 000000000..df491caca
--- /dev/null
+++ b/1775/CH3/EX3.6/Chapter3_Example6.sce
@@ -0,0 +1,32 @@
+//Chapter-3, Illustration 6, Page 144
+//Title: Internal Combustion Engines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+BP0=12;//Brake Power output in kW
+BP1=40.5;//Brake Power in trial 1 in kW
+BP2=40.2;//Brake Power in trial 2 in kW
+BP3=40.1;//Brake Power in trial 3 in kW
+BP4=40.6;//Brake Power in trial 4 in kW
+BP5=40.7;//Brake Power in trial 5 in kW
+BP6=40.0;//Brake Power in trial 6 in kW
+
+//CALCULATIONS
+BPALL=BP0+BP6;//Total Brake Power in kW
+IP1=BPALL-BP1;//Indicated Power in trial 1 in kW
+IP2=BPALL-BP2;//Indicated Power in trial 2 in kW
+IP3=BPALL-BP3;//Indicated Power in trial 3 in kW
+IP4=BPALL-BP4;//Indicated Power in trial 4 in kW
+IP5=BPALL-BP5;//Indicated Power in trial 5 in kW
+IP6=BPALL-BP6;//Indicated Power in trial 6 in kW
+IPALL=IP1+IP2+IP3+IP4+IP5+IP6;//Total Indicated Power in kW
+nM=(BPALL/IPALL)*100;//Mechanical efficiency
+
+//OUTPUT
+mprintf('Indicated Power of the engine is %3.1f kW \n Mechanical efficiency of the engine is %3.1f percent',IPALL,nM)
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH3/EX3.7/Chapter3_Example7.sce b/1775/CH3/EX3.7/Chapter3_Example7.sce
new file mode 100755
index 000000000..78caaf11e
--- /dev/null
+++ b/1775/CH3/EX3.7/Chapter3_Example7.sce
@@ -0,0 +1,35 @@
+//Chapter-3, Illustration 7, Page 145
+//Title: Internal Combustion Engines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+n=2;//No. of cylinders
+N=4000;//speed of engine in rpm
+nV=0.77;//Volumetric efficiency
+nM=0.75;//Mechanical efficiency
+m=10;//fuel consumed in lit/h
+g=0.73;//spcific gravity of fuel
+Raf=18;//air-fuel ratio
+Np=600;//piston speed in m/min
+imep=5;//Indicated mean efective pressure in bar
+R=281;//Universal gas constant in J/kg-K
+T=288;//Standard temperature in K
+P=1.013;//Standard pressure in bar
+
+//CALCULATIONS
+L=Np/(2*N);//Piston stroke in m
+mf=m*g;//mass of fuel in kg/h
+ma=mf*Raf;//mass of air required in kg/h
+Va=(ma*R*T)/(P*60*(10^5));//volume of air required in (m^3)/min
+D=sqrt((2*Va)/(nV*L*N*3.1415));//Diameter in m
+IP=(2*imep*100*L*3.1415*(D^2)*N)/(4*60);//Indicated Power in kW
+BP=nV*IP;//Brake Power in kW
+
+//OUTPUT
+mprintf('Piston Stroke is %3.3f m \n Bore diameter is %3.4f m \n Brake power is %3.1f kW',L,D,BP)
+
+
+
+//==============================END OF PROGRAM=================================