diff options
Diffstat (limited to '1775/CH2')
22 files changed, 743 insertions, 0 deletions
diff --git a/1775/CH2/EX2.1/Chapter2_Example1.sce b/1775/CH2/EX2.1/Chapter2_Example1.sce new file mode 100755 index 000000000..75371c726 --- /dev/null +++ b/1775/CH2/EX2.1/Chapter2_Example1.sce @@ -0,0 +1,35 @@ +//Chapter-2, Illustration 1, Page 55
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=0.1;//Pressure of air supplied in MPa
+T1=308;//Temperature of air supplied in K
+rv=8;//Compression ratio
+q1=2100;//Heat supplied in kJ/kg
+Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
+Cv=0.718;//Specific heat at constant volume in kJ/kg-K
+R=0.287;//Universal gas constant in kJ/kg-K
+
+//CALCULATIONS
+y=Cp/Cv;//Ratio of specific heats
+n=(1-(1/(rv^(y-1))))*100;//Cycle efficiency
+v1=(R*T1)/(P1*1000);//Specific volume at point 1 in (m^3)/kg
+v2=v1/rv;//Specific volume at point 2 in (m^3)/kg
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+T3=(q1/Cv)+T2;//Temperature at point 3 in K
+P2=P1*(rv^y);//Pressure at point 2 in MPa
+P3=P2*(T3/T2);//Pressure at point 3 in MPa
+wnet=(q1*n)/100;//Net workdone in J/kg
+MEP=(wnet/(v1-v2))/1000;//Mean effective pressure in MPa
+
+//OUTPUT
+mprintf('Maximum pressure of the cycle is %3.3f MPa \n Maximum temperature of the cycle is %3.0f K \n Cycle efficiency is %3.1f percent \n Mean effective pressure is %3.3f MPa',P3,T3,n,MEP)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.10/Chapter2_Example10.sce b/1775/CH2/EX2.10/Chapter2_Example10.sce new file mode 100755 index 000000000..a3d2400af --- /dev/null +++ b/1775/CH2/EX2.10/Chapter2_Example10.sce @@ -0,0 +1,35 @@ +//Chapter-2, Illustration 10, Page 66
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+rv=20;//Compression ratio
+P1=95;//Pressure at point 1 in kPa
+T1=293;//Temperature at point 1 in K
+T3=2200;//Temperature at point 3 in K
+y=1.4;//Ratio of specific heats
+R=287;//Universal gas constant in J/kg-K
+Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+P2=P1*(rv^y);//Pressure at point 2 in kPa
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+v2=(R*T2)/(P2*1000);//Specific volume at point 2 in (m^3)/kg
+v3=v2*(T3/T2);//Specific volume at point 3 in (m^3)/kg
+rc=v3/v2;//Cut-off ratio
+nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Thermal efficiency
+q23=Cp*(T3-T2);//Heat flow between points 2 and 3 in kJ/kg
+wnet=(nth*q23)/100;//Net workdone in kJ/kg
+MEP=wnet/(v2*(rv-1));//Mean effective pressure in kPa
+
+//OUTPUT
+mprintf('Thermal efficiency is %3.1f percent \n Mean effective pressure is %3.2f kPa',nth,MEP)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.11/Chapter2_Example11.sce b/1775/CH2/EX2.11/Chapter2_Example11.sce new file mode 100755 index 000000000..687920f54 --- /dev/null +++ b/1775/CH2/EX2.11/Chapter2_Example11.sce @@ -0,0 +1,26 @@ +//Chapter-2, Illustration 11, Page 68
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+rv=21;//Compression ratio
+re=10.5;//Expansion ratio
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+rc=rv/re;//Cut-off ratio
+nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Air standard efficiency
+
+//OUTPUT
+mprintf('Cut-off ratio is %3.0f \n Air standard efficiency is %3.2f percent',rc,nth)
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.12/Chapter2_Example12.sce b/1775/CH2/EX2.12/Chapter2_Example12.sce new file mode 100755 index 000000000..c764eb2ff --- /dev/null +++ b/1775/CH2/EX2.12/Chapter2_Example12.sce @@ -0,0 +1,25 @@ +//Chapter-2, Illustration 12, Page 69
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+rv=16;//Compression ratio
+rp=1.5;//Pressure ratio
+y=1.4;//Ratio of specific heats
+cp=8;//Cut-off percentage
+
+//CALCULATIONS
+rc=2.2;//Cut-off ratio
+ntd=(1-((rp*(rc^y)-1)/((rv^(y-1)*((rp-1)+(y*rp*(rc-1)))))))*100;//Dual cycle efficiency
+
+//OUTPUT
+mprintf('Ideal efficiency of engine is %3.1f percent',ntd)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.13/Chapter2_Example13.sce b/1775/CH2/EX2.13/Chapter2_Example13.sce new file mode 100755 index 000000000..dcaf50df2 --- /dev/null +++ b/1775/CH2/EX2.13/Chapter2_Example13.sce @@ -0,0 +1,30 @@ +//Chapter-2, Illustration 13, Page 69
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+d=0.2;//Bore in m
+L=0.5;//Stroke in m
+c=0.06;//Cut-off percentage
+y=1.4;//Ratio of specific heats
+rv=15;//Compression ratio
+rp=1.4;//Pressure ratio
+
+//CALCULATIONS
+Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3
+DV=c*Vs;//Difference in volumes at points 4 and 3
+V3=Vs/(rv-1);//Specific volume at point 3 in m^3
+V4=V3+DV;//Specific volume at point 4 in m^3
+rc=V4/V3;//Cut-off ratio
+ntd=(1-((rp*(rc^y)-1)/((rv^(y-1)*((rp-1)+(y*rp*(rc-1)))))))*100;//Ideal efficiency
+
+//OUTPUT
+mprintf('Ideal efficiency of the engine is %3.1f percent',ntd)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.14/Chapter2_Example14.sce b/1775/CH2/EX2.14/Chapter2_Example14.sce new file mode 100755 index 000000000..3f9e798d5 --- /dev/null +++ b/1775/CH2/EX2.14/Chapter2_Example14.sce @@ -0,0 +1,47 @@ +//Chapter-2, Illustration 14, Page 70
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+d=0.2;//Bore in m
+L=0.3;//Stroke in m
+c=0.04;//Cut-off percentage
+y=1.4;//Ratio of specific heats
+rv=8;//Compression ratio
+P1=1;//Pressure at point 1 in bar
+P3=60;//Pressure at point 3 in bar
+T1=298;//Temperature at point 1 in K
+R=287;//Universal gas constant in J/kg
+Cv=0.718;//Speific heat at constant volume in kJ/kg-K
+Cp=1.005;//Speific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3
+V2=Vs/(rv-1);//Specific volume at point 2 in m^3
+V3=V2;//Specific volume at point 3 in m^3
+V1=V2+Vs;//Specific volume at pont 1 in m^3
+V5=V1;//Specific volume at pont 5 in m^3
+P2=P1*(rv^y);//Pressure at point 2 in bar
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+T3=T2*(P3/P2);//Temperature at point 3 in K
+V4=V3+(c*(V1-V2));//Specific volume at point 4 in m^3
+T4=T3*(V4/V3);//Temperature at point 4 in K
+T5=T4*((V4/V5)^(y-1));//Temperature at point 5 in K
+q1=(Cv*(T3-T2))+(Cp*(T4-T3));//Heat added in kJ/kg
+q2=Cv*(T5-T1);//Heat rejected in kJ/kg
+nth=(1-(q2/q1))*100;//Thermal efficiency
+m=(P1*V1*(10^5))/(R*T1);//Mass of air supplied in kg
+W=m*(q1-q2);//Workdone in kJ/cycle
+
+//OUTPUT
+mprintf('Amount of heat added is %3.1f kJ/kg \n Amount of heat rejected is %3.2f kJ/kg \n Workdone per cycle is %3.2f kJ/cycle \n Thermal efficiency is %3.2f percent',q1,q2,W,nth)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.15/Chapter2_Example15.sce b/1775/CH2/EX2.15/Chapter2_Example15.sce new file mode 100755 index 000000000..381d67d2e --- /dev/null +++ b/1775/CH2/EX2.15/Chapter2_Example15.sce @@ -0,0 +1,45 @@ +//Chapter-2, Illustration 15, Page 72
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=1;//Pressure at point 1 in bar
+P3=70;//Pressure at point 3 in bar
+T1=310;//Temperature at point 1 in K
+rv=10;//Compression ratio
+y=1.4;//Ratio of specific heats
+qin=2805;//Heat added in kJ/kg
+m=1;//Mass of air in kg
+R=287;//Universal gas constant in J/kg
+Cv=0.718;//Speific heat at constant volume in kJ/kg-K
+Cp=1.005;//Speific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+V1=(m*R*T1)/(P1*(10^5));//Volume at point 1 in m^3
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+P2=P1*(rv^y);//Pressure at point 2 in K
+T3=T2*(P3/P2);//Temperature at point 3 in K
+q23=Cv*(T3-T2);//Heat supplied at constant volume in kJ/kg
+q34=qin-q23;//Heat supplied at constant pressure in kJ/kg
+T4=(q34/Cp)+T3;//Temperature at point 4 in K
+V2=V1/rv;//Volume at point 2 in m^3
+V4=V2*(T4/T3);//Volume at point 4 in m^3
+V5=V1;//Volume at point 5 in m^3
+T5=T4*((V4/V5)^(y-1));//Temperature at point 5 in K
+qout=Cv*(T5-T1);//Heat rejected in kJ/kg
+nth=(1-(qout/qin))*100;//Thermal efficiency
+W=qin-qout;//Workdone in kJ/kg
+Vs=V1*(1-(1/rv));//Swept volume in (m^3)/kg
+MEP=(W/Vs)/100;//Mean effective pressure in bar
+
+//OUTPUT
+mprintf('Mean effective pressure is %3.2f bar \n Thermal efficiency is %3.2f percent',MEP,nth)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.16/Chapter2_Example16.sce b/1775/CH2/EX2.16/Chapter2_Example16.sce new file mode 100755 index 000000000..0bded73f9 --- /dev/null +++ b/1775/CH2/EX2.16/Chapter2_Example16.sce @@ -0,0 +1,33 @@ +//Chapter-2, Illustration 16, Page 74
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=1;//Pressure at point 1 in bar
+T1=298;//Temperature at point 1 in K
+P2=3;//Pressure at point 2 in bar
+T3=923;//Temperature at point 3 in K
+y=1.4;//Ratio of specific heats
+Cp=1.005;//Speific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+x=(y-1)/y;//Ratio
+rp=P2/P1;//Pressure ratio
+nth=(1-(1/(rp^x)))*100;//Cycle efficiency
+T2=T1*(rp^x);//Temperature at point 2 in K
+q1=Cp*(T3-T2);//Heat supplied in kJ/kg
+Wout=(nth*q1)/100;//Work output in kJ/kg
+q2=q1-Wout;//Heat rejected in kJ/kg
+T4=T3*((1/rp)^x);//Temperature at point 4 in K
+
+//OUTPUT
+mprintf('Cycle efficiency is %3.2f percent \n Heat supplied to air is %3.1f kJ/kg \n Work available at the shaft is %3.2f kJ/kg \n Heat rejected in the cooler is %3.2f kJ/kg \n Turbine exit temperature is %3.2f K',nth,q1,Wout,q2,T4)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.17/Chapter2_Example17.sce b/1775/CH2/EX2.17/Chapter2_Example17.sce new file mode 100755 index 000000000..23da8e04e --- /dev/null +++ b/1775/CH2/EX2.17/Chapter2_Example17.sce @@ -0,0 +1,32 @@ +//Chapter-2, Illustration 17, Page 75
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+T1=283;//Temperature at point 1 in K
+T3=1353;//Temperature at point 3 in K
+y=1.41;//Ratio of specific heats
+Cp=1.007;//Specific heat constant pressure in kJ/kg-K
+
+//CALCULATIONS
+x=(y-1)/y;//Ratio
+rpmax=((T3/T1)^(1/x));//Maximum pressure ratio
+rpopt=sqrt(rpmax);//Optimum pressure ratio
+T2=T1*(rpopt^x);//Temperature at point 2 in K
+T4=T2;//Maximum temperature at point 4 in K
+Wmax=Cp*((T3-T4)-(T2-T1));//Maximum net specific work output in kJ/kg
+nth=(Wmax/(Cp*(T3-T2)))*100;//Thermal efficiency
+WR=nth/100;//Work ratio
+nc=((T3-T1)/T3)*100;//Carnot efficiency
+
+//OUTPUT
+mprintf('Optimum pressure ratio is %3.2f \n Maximum net specific work output %3.0f kJ/kg \n Thermal efficiency %3.0f percent \n Work ratio is %3.2f \n Carnot efficiency is %3.0f percent',rpopt,Wmax,nth,WR,nc)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.18/Chapter2_Example18.sce b/1775/CH2/EX2.18/Chapter2_Example18.sce new file mode 100755 index 000000000..679c1d90a --- /dev/null +++ b/1775/CH2/EX2.18/Chapter2_Example18.sce @@ -0,0 +1,26 @@ +//Chapter-2, Illustration 18, Page 76
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+Tmin=300;//Minimum temperature in K
+Tmax=1073;//Maximum temperature in K
+Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+Wmax=Cp*((sqrt(Tmax)-sqrt(Tmin))^2);//Maximum work output in kJ/kg
+nB=(1-sqrt(Tmin/Tmax))*100;//Brayton cycle efficiency
+nC=(1-(Tmin/Tmax))*100;//Carnot efficiency
+r=nB/nC;//Ratio of brayton cycle efficiency to carnot efficieny
+
+//OUTPUT
+mprintf('Maximum work per kg of air is %3.2f kJ/kg \n Cycle efficiency is %3.0f percent \n Ratio of brayton cycle efficiency to carnot efficieny is %3.3f',Wmax,nB,r)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.19/Chapter2_Example19.sce b/1775/CH2/EX2.19/Chapter2_Example19.sce new file mode 100755 index 000000000..7fc7b60ba --- /dev/null +++ b/1775/CH2/EX2.19/Chapter2_Example19.sce @@ -0,0 +1,38 @@ +//Chapter-2, Illustration 19, Page 77
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+T1=291;//Temperature at point 1 in K
+P1=100;//Pressure at point 1 in kN/(m^2)
+nC=0.85;//Isentropic efficiency of compressor
+nT=0.88;//Isentropic effficiency of turbine
+rp=8;//Pressure ratio
+T3=1273;//Temperature at point 3 in K
+m=4.5;//Mass flow rate of air in kg/s
+y=1.4;//Ratio of speciifc heats
+Cp=1.006;//Specific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+x=(y-1)/y;//Ratio
+T2s=T1*(rp^x);//Temperature at point 2s in K
+T2=T1+((T2s-T1)/nC);//Temperature at point 2 in K
+t2=T2-273;//Temperature at point 2 in oC
+T4s=T3*((1/rp)^x);//Temperature at point 4s in K
+T4=T3-((T3-T4s)*nT);//Temperature at point 4 in K
+t4=T4-273;//Temperature at point 4 in oC
+W=m*Cp*((T3-T4)-(T2-T1));//Net power output in kW
+nth=(((T3-T4)-(T2-T1))/(T3-T2))*100;//Thermal efficiency
+WR=W/(m*Cp*(T3-T4));//Work ratio
+
+//OUTPUT
+mprintf('Net power output of the turbine is %3.0f kW \n Thermal efficiency of the plant is %3.0f percent \n Work ratio is %3.3f',W,nth,WR)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.2/Chapter2_Example2.sce b/1775/CH2/EX2.2/Chapter2_Example2.sce new file mode 100755 index 000000000..f85fd4b7d --- /dev/null +++ b/1775/CH2/EX2.2/Chapter2_Example2.sce @@ -0,0 +1,30 @@ +//Chapter-2, Illustration 2, Page 57
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+d=80;//Bore in mm
+L=85;//Stroke in mm
+Vc=0.06;//Clearance volume in litre
+n=0.22;//Actual thermal efficiency
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+Vs=(3.147/4)*(d^2)*L;//Stroke volume in mm^3
+Vt=Vs+(Vc*(10^6));//Total volume in mm^3
+rv=Vt/(Vc*(10^6));//Compression ratio
+ni=(1-(1/(rv^(y-1))));//Ideal thermal efficiency
+nr=(n/ni)*100;//Relative efficiency
+
+//OUTPUT
+mprintf('Relative efficiency of the engine is %3.1f percent',nr)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.20/Chapter2_Example20.sce b/1775/CH2/EX2.20/Chapter2_Example20.sce new file mode 100755 index 000000000..b774d6e1b --- /dev/null +++ b/1775/CH2/EX2.20/Chapter2_Example20.sce @@ -0,0 +1,45 @@ +//Chapter-2, Illustration 20, Page 79
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=0.1;//Pressure at point 1 in MPa
+T1=303;//Temperature at point 1 in K
+T3=1173;//Temperature at point 3 in K
+rp=6;//Pressure ratio
+nC=0.8;//Compressor efficiency
+nT=nC;//Turbine efficiency
+e=0.75;//Regenerator effectiveness
+y=1.4;//Ratio of specific heats
+Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+x=(y-1)/y;//Ratio
+T2s=T1*(rp^x);//Temperature at point 2s in K
+T4s=T3/(rp^x);//Temperature at point 4s in K
+DTa=(T2s-T1)/nC;//Difference in temperatures at point 2 and 1 in K
+DTb=(T3-T4s)*nT;//Difference in temperatures at point 3 and 4 in K
+wT=Cp*DTb;//Turbine work in kJ/kg
+wC=Cp*DTa;//Compressor work in kJ/kg
+T2=DTa+T1;//Temperature at point 2 in K
+q1=Cp*(T3-T2);//Heat supplied in kJ/kg
+nth1=((wT-wC)/q1)*100;//Cycle efficiency without regenerator
+T4=T3-DTb;//Temperature at point 4 in K
+T5=T2+(e*(T4-T2));//Temperature at point 5 in K
+q2=Cp*(T3-T5);//Heat supplied with regenerator in kJ/kg
+nth2=((wT-wC)/q2)*100;//Cycle efficiency with regenerator
+p=((nth2-nth1)/nth1)*100;//Percentage increase due to regeneration
+
+//OUTPUT
+mprintf('Percentage increase in the cycle efficiency due to regeneration is %3.2f percent',p)
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.21/Chapter2_Example21.sce b/1775/CH2/EX2.21/Chapter2_Example21.sce new file mode 100755 index 000000000..44be75112 --- /dev/null +++ b/1775/CH2/EX2.21/Chapter2_Example21.sce @@ -0,0 +1,31 @@ +//Chapter-2, Illustration 21, Page 80
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=1;//Pressure at point 1 in atm
+P3=5;//Pressure at point 3 in atm
+T1=288;//Temperature at point 1 in K
+T4=1143;//Temperature at point 4 in K
+y=1.4;//Ratio of specific heats
+Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+rp=P3/P1;//Pressure ratio
+x=(y-1)/y;//Ratio
+T3=T1*(rp^x);//Temperature at point 3 in K
+T5=T4-(T3-T1);//Temperature at point 5 in K
+T6=T4/(rp^x);//Temperature at point 6 in K
+C6=sqrt(2000*Cp*(T5-T6));//Velocity of air leaving the nozzle in m/s
+
+//OUTPUT
+mprintf('Velocity of air leaving the nozzle is %3.1f m/s',C6)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.22/Chapter2_Example22.sce b/1775/CH2/EX2.22/Chapter2_Example22.sce new file mode 100755 index 000000000..cc6ebb314 --- /dev/null +++ b/1775/CH2/EX2.22/Chapter2_Example22.sce @@ -0,0 +1,45 @@ +//Chapter-2, Illustration 22, Page 81
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+C1=280;//Velocity of aircraft in m/s
+P1=48;//Pressure at point 1 kPa
+T1=260;//Temperature at point 1 in K
+rp=13;//Pressure ratio
+T4=1300;//Temperature at point 4 in K
+Cp=1005;//Specific heat at constant pressure in J/kg
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+x=(y-1)/y;//Ratio
+T2=T1+((C1^2)/(2*Cp));//Temperature at point 2 in K
+P2=P1*((T2/T1)^(1/x));//Pressure at point 2 in kPa
+P3=rp*P2;//Pressure at point 3 in kPa
+P4=P3;//Pressure at point 4 in kPa
+T3=T2*(rp^x);//Temperature at point 3 in K
+T5=T4-T3+T2;//Temperature at point 5 in K
+P5=P4*((T5/T4)^(1/x));//Pressure at point 5 in kPa
+P6=P1;//Pressure at point 6 in kPa
+T6=T5*((P6/P5)^x);//Temperature at point 6 in K
+C6=sqrt(2*Cp*(T5-T6));//Velocity of air at nozzle exit in m/s
+W=(C6-C1)*C1;//Propulsive power in J/kg
+Q=Cp*(T4-T3);//Total heat transfer rate in J/kg
+nP=(W/Q)*100;//Propulsive efficiency
+
+//OUTPUT
+mprintf('Pressure at the turbine exit is %3.1f kPa \n Velocity of exhaust gases are %3.1f m/s \n Propulsive efficiency is %3.1f percent',P5,C6,nP)
+
+
+
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.3/Chapter2_Example3.sce b/1775/CH2/EX2.3/Chapter2_Example3.sce new file mode 100755 index 000000000..0e0188a15 --- /dev/null +++ b/1775/CH2/EX2.3/Chapter2_Example3.sce @@ -0,0 +1,27 @@ +//Chapter-2, Illustration 3, Page 57
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+d=0.137;//Bore in m
+L=0.13;//Stroke in m
+Vc=280*(10^-6);//Clearance volume in m^3
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3
+rv=(Vc/Vs)*100;//Compression ratio
+rvf=(Vs+Vc)/Vc;//final compression ratio
+n=(1-(1/rvf^(y-1)))*100;//Cycle efficiency
+
+//OUTPUT
+mprintf('Clearance volume is %3.1f percent of swept volume \n Otto cycle efficiency is %3.2f percent',rv,n)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.4/Chapter2_Example4.sce b/1775/CH2/EX2.4/Chapter2_Example4.sce new file mode 100755 index 000000000..3002c430c --- /dev/null +++ b/1775/CH2/EX2.4/Chapter2_Example4.sce @@ -0,0 +1,37 @@ +//Chapter-2, Illustration 4, Page 58
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+rv=9.5;//Compression ratio
+P1=100;//Air pressure in kPa
+T1=290;//Air temperature in K
+V1=600*(10^-6);//Volume of air in m^3
+T4=800;//Final temperature in K
+R=287;//Universal gas constan in J/kg.K
+Cv=0.718;//Specific heat at constant volume in kJ/kg.K
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+T3=T4*(rv^(y-1));//Temperature at the end of constant volume heat addition in K
+P2=P1*(rv^y);//Pressure at point 2 in kPa
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+P3=P2*(T3/T2);//Pressure at point 3 in kPa
+m=(P1*1000*V1)/(R*T1);//Specific mass in kg/s
+Q=m*Cv*(T3-T2);//Heat transferred in kJ
+n=(1-(1/rv^(y-1)))*100;//Thermal efficiency
+Wnet=(n*Q)/100;//Net workdone in kJ
+MEP=Wnet/(V1*(1-(1/rv)));//Mean effective pressure in kPa
+
+//OUTPUT
+mprintf('Maximum pressure of the cycle is %3.2f kPa \n Maximum temperature of the cycle is %3.1f K \n Amount of heat transferred is %3.2f kJ \n Thermal efficiency is %3.1f percent \n Mean effective pressure is %3.1f kPa',P3,T3,Q,n,MEP)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.5/Chapter2_Example5.sce b/1775/CH2/EX2.5/Chapter2_Example5.sce new file mode 100755 index 000000000..c64e5a791 --- /dev/null +++ b/1775/CH2/EX2.5/Chapter2_Example5.sce @@ -0,0 +1,35 @@ +//Chapter-2, Illustration 5, Page 60
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+rv=8;//Compression ratio
+P1=95;//Pressure at point 1 in kPa
+T1=300;//Temperature at point 1 in K
+q23=750;//Heat transferred during constant volume heat addition process in kJ/kg
+y=1.4;//Ratio of specific heats
+Cv=0.718;//Specific heat at constant volume in kJ/kg-K
+R=287;//Universal gas constant in J/kg-K
+
+//CALCULATIONS
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+P2=P1*(rv^y);//Pressure at point 2 in kPa
+T3=(q23/Cv)+T2;//Temperature at point 3 in K
+P3=P2*(T3/T2);//Pressure at point 3 in kPa
+nth=(1-(1/(rv^(y-1))))*100;//Thermal efficiency
+Wnet=(nth*q23)/100;//Net work output in kJ/kg
+v1=(R*T1)/(P1*1000);//Speific volume at point 1 in (m^3)/kg
+MEP=Wnet/(v1*(1-(1/rv)));//Mean effective pressure in kPa
+
+//OUTPUT
+mprintf('Pressure at the end of heat addition process is %3.1f kPa \n Temperature at the end of heat addition process is %3.1f K \n Net work output is %3.2f kJ/kg \n Thermal efficiency is %3.2f percent \n Mean effective pressure is %3.0f kPa',P3,T3,Wnet,nth,MEP)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.6/Chapter2_Example6.sce b/1775/CH2/EX2.6/Chapter2_Example6.sce new file mode 100755 index 000000000..90217347d --- /dev/null +++ b/1775/CH2/EX2.6/Chapter2_Example6.sce @@ -0,0 +1,25 @@ +//Chapter-2, Illustration 6, Page 61
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+rv=14;//Compression ratio
+c=0.06;//Cut-off percentage
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+rc=1.78;//Cut-off ratio
+nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Thermal efficiency
+
+//OUTPUT
+mprintf('Air standard efficiency is %3.1f percent',nth)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.7/Chapter2_Example7.sce b/1775/CH2/EX2.7/Chapter2_Example7.sce new file mode 100755 index 000000000..628ef516e --- /dev/null +++ b/1775/CH2/EX2.7/Chapter2_Example7.sce @@ -0,0 +1,32 @@ +//Chapter-2, Illustration 7, Page 62
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+rv=16;//Compression ratio
+P1=0.1;//Pressure at point 1 in MPa
+T1=288;//Temperature at point 1 in K
+T3=1753;//Temperature at point 3 in K
+y=1.4;//Ratio of specific heats
+Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
+R=0.287;//Universal gas constant in kJ/kg-K
+
+//CALCULATIONS
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+rc=T3/T2;//Cut-off ratio
+q1=Cp*(T3-T2);//Heat supplied in kJ/kg
+nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Cycle efficiency
+wnet=(q1*nth)/100;//Net work done in kJ/kg
+v1=(R*T1)/(P1*1000);//Speific volume at point 1 in (m^3)/kg
+v2=v1/rv;//Speific volume at point 2 in (m^3)/kg
+MEP=wnet/(v1-v2);//Mean effective pressure in kPa
+
+//OUTPUT
+mprintf('Cut-off ratio is %3.2f \n Heat supplied is %3.1f kJ/kg \n Cycle efficiency is %3.1f percent \n Mean effective pressure is %3.2f kPa',rc,q1,nth,MEP)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.8/Chapter2_Example8.sce b/1775/CH2/EX2.8/Chapter2_Example8.sce new file mode 100755 index 000000000..f6316a233 --- /dev/null +++ b/1775/CH2/EX2.8/Chapter2_Example8.sce @@ -0,0 +1,34 @@ +//Chapter-2, Illustration 8, Page 64
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+d=0.15;//Bore in m
+L=0.25;//Stroke in m
+Vc=400*(10^-6);//Clearance volume in m^3
+V2=Vc;//Clearance volume in m^3
+c1=0.05;//Cut-off percentage 1
+c2=0.08;//Cut-off percentage 2
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3
+V31=V2+(c1*Vs);//Volume at the point of cut-off in m^3
+rc1=V31/V2;//Cut-off ratio 1
+rv=(Vc+Vs)/Vc;//Compression ratio
+nth1=(1-(((rc1^y)-1)/((rv^(y-1))*y*(rc1-1))))*100;//Air standard efficiency 1
+V32=V2+(c2*Vs);//Volume at the point of cut-off in m^3
+rc2=V32/V2;//Cut-off ratio 2
+nth2=(1-(((rc2^y)-1)/((rv^(y-1))*y*(rc2-1))))*100;//Air standard efficiency 2
+pl=nth1-nth2;//Percentage loss in efficiency
+
+//OUTPUT
+mprintf('Air standard efficiency at 5 percent cut-off is %3.2f percent \n Air standard efficiency at 8 percent cut-off is %3.2f percent \n Percentage loss in efficiency is %3.2f percent',nth1,nth2,pl)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH2/EX2.9/Chapter2_Example9.sce b/1775/CH2/EX2.9/Chapter2_Example9.sce new file mode 100755 index 000000000..0e5ece4f1 --- /dev/null +++ b/1775/CH2/EX2.9/Chapter2_Example9.sce @@ -0,0 +1,30 @@ +//Chapter-2, Illustration 9, Page 65
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+e=7.5;//Expansion ratio
+c=15;//Compression ratio
+P1=98;//Pressure at point 1 in kN/(m^2)
+P4=258;//Pressure at point 4 in kN/(m^2)
+T1=317;//Temperature at point 1 in K
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+T4=T1*(P4/P1);//Temperature at point 4 in K
+T3=T4*(e^(y-1));//Temperature at point 3 in K
+t3=T3-273;//Temperature at point 3 in oC
+T2=T1*(c^(y-1));//Temperature at point 2 in K
+n=(1-((T4-T1)/(y*(T3-T2))))*100;//Thermal efficiency
+
+//OUTPUT
+mprintf('Maximum temperature attained during the cycle is %3.1f oC \n Thermal efficiency of the cycle is %3.1f percent',t3,n)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
|