summaryrefslogtreecommitdiff
path: root/1757/CH13
diff options
context:
space:
mode:
Diffstat (limited to '1757/CH13')
-rwxr-xr-x1757/CH13/EX13.1/EX13_1.sce20
-rwxr-xr-x1757/CH13/EX13.10/EX13_10.sce12
-rwxr-xr-x1757/CH13/EX13.11/EX13_11.sce12
-rwxr-xr-x1757/CH13/EX13.2/EX13_2.sce10
-rwxr-xr-x1757/CH13/EX13.3/EX13_3.sce11
-rwxr-xr-x1757/CH13/EX13.4/EX13_4.sce21
-rwxr-xr-x1757/CH13/EX13.5/EX13_5.sce14
-rwxr-xr-x1757/CH13/EX13.6/EX13_6.sce11
-rwxr-xr-x1757/CH13/EX13.7/EX13_7.sce20
-rwxr-xr-x1757/CH13/EX13.8/EX13_8.sce11
-rwxr-xr-x1757/CH13/EX13.9/EX13_9.sce18
11 files changed, 160 insertions, 0 deletions
diff --git a/1757/CH13/EX13.1/EX13_1.sce b/1757/CH13/EX13.1/EX13_1.sce
new file mode 100755
index 000000000..7859c5e43
--- /dev/null
+++ b/1757/CH13/EX13.1/EX13_1.sce
@@ -0,0 +1,20 @@
+//Example13.1 // to design RC phase shift oscillator for the oscillation frequency f = 1 KHz
+clc;
+clear;
+close;
+f =1 ; // KHz
+C = 0.01 ; // uF
+
+// The oscillation frequency of practical RC phase shift oscillator is defined as
+//w = 1/(sqrt(6)*R*C);
+
+// gain of practical RC phase shift oscillator is
+//A = R1/R = 29 equation 1
+// the frequency selective element resistor
+//R = 1/(sqrt(6)*w*C);
+R = 1/(sqrt(6)*2*%pi*f*C);
+disp('the frequency selective element resistor is = '+string(R)+ ' K ohm ');
+
+// The feedback resistance
+R1 = 29*R ; // from equation 1
+disp('The feedback resistance is = '+string(R1)+ ' K ohm');
diff --git a/1757/CH13/EX13.10/EX13_10.sce b/1757/CH13/EX13.10/EX13_10.sce
new file mode 100755
index 000000000..bcd9f0be0
--- /dev/null
+++ b/1757/CH13/EX13.10/EX13_10.sce
@@ -0,0 +1,12 @@
+//Example13.10 // Determine the frequency of the monostable multivibrator
+clc;
+clear;
+close;
+R1 = 5*10^3 ;
+R2 =15*10^3 ;
+C = 0.01*10^-6 ;
+R = 12*10^3 ;
+
+// the output of monostable multivibrator is defined as
+f = 1/(R*C*(log(1+(R2/R1))));
+disp('the output of monostable multivibrator is = ' +string(f)+ ' Hz');
diff --git a/1757/CH13/EX13.11/EX13_11.sce b/1757/CH13/EX13.11/EX13_11.sce
new file mode 100755
index 000000000..5918f0a99
--- /dev/null
+++ b/1757/CH13/EX13.11/EX13_11.sce
@@ -0,0 +1,12 @@
+//Example13.11 // Determine the frequency of the monostable multivibrator
+clc;
+clear;
+close;
+R1 = 5*10^3 ;
+R2 =15*10^3 ;
+C = 0.01 ;
+R = 25 ;
+
+// the output of monostable multivibrator is defined as
+f = 1/(R*C);
+disp('the output of monostable multivibrator is = ' +string(f)+ ' KHz');
diff --git a/1757/CH13/EX13.2/EX13_2.sce b/1757/CH13/EX13.2/EX13_2.sce
new file mode 100755
index 000000000..69cd10c2c
--- /dev/null
+++ b/1757/CH13/EX13.2/EX13_2.sce
@@ -0,0 +1,10 @@
+//Example13.2 // to determine the oscillaton frequency of the phase shift oscillator
+clc;
+clear;
+close;
+C = 0.05 ; // uF
+R = 2.5 ; // K ohm
+
+// the oscillator frequency of practical RC phase shift oscillator f
+f = 1/(2*%pi*(sqrt(6)*(R*C)));
+disp('the oscillator frequency of practical RC phase shift oscillator f is = '+string(f)+ ' KHz ');
diff --git a/1757/CH13/EX13.3/EX13_3.sce b/1757/CH13/EX13.3/EX13_3.sce
new file mode 100755
index 000000000..5afd332e1
--- /dev/null
+++ b/1757/CH13/EX13.3/EX13_3.sce
@@ -0,0 +1,11 @@
+//Example13.3 // to calculate the frequency of a wein bridge oscillator
+clc;
+clear;
+close;
+C = 2400*10^-12 ; // F
+R = 10*10^3 ; // ohm
+
+// the oscillator frequency of practical RC phase shift oscillator f
+f = 1/(2*%pi*R*C);
+disp('the oscillator frequency of practical RC phase shift oscillator f is = '+string(f)+ ' Hz ');
+
diff --git a/1757/CH13/EX13.4/EX13_4.sce b/1757/CH13/EX13.4/EX13_4.sce
new file mode 100755
index 000000000..a51cdb5c2
--- /dev/null
+++ b/1757/CH13/EX13.4/EX13_4.sce
@@ -0,0 +1,21 @@
+//Example13.4 // to design the wien bridge oscillator for the oscillation frequency f = 1 KHz
+clc;
+clear;
+close;
+f = 1 ; // K ohm
+C = 0.01 ; // uF
+
+
+// the frequency f is define as
+// f = 1/(2*%pi*R*C);
+
+// the resistor R is
+R = 1/(2*%pi*f*C);
+disp('the resistor R is = '+string(R)+ ' K ohm ');
+
+// the loop gain of the wien bridge oscillator is unity which is defined as
+// A = (1+(R2/R1))*(1/3) = 1 ;
+// R2/R1 = 2 ;
+R1 = 10 ; // K ohm we assume
+R2 = 2*R1 ;
+disp('The resistor R2 value is = '+string(R2)+ ' K ohm ');
diff --git a/1757/CH13/EX13.5/EX13_5.sce b/1757/CH13/EX13.5/EX13_5.sce
new file mode 100755
index 000000000..10c25c6e4
--- /dev/null
+++ b/1757/CH13/EX13.5/EX13_5.sce
@@ -0,0 +1,14 @@
+//Example13.5 // to calculate the frequency of a wein bridge oscillator
+clc;
+clear;
+close;
+C = 0.05*10^-6 ; // F
+R = 20*10^3 ; // ohm
+R1 = 10*10^3 ; // ohm
+R2 = 20*10^3 ; //ohm
+
+// the frequency of wien bridge oscillator f
+f = 1/(2*%pi*R*C);
+disp('the frequency of wien bridge oscillator f is = '+string(f)+ ' Hz ');
+
+
diff --git a/1757/CH13/EX13.6/EX13_6.sce b/1757/CH13/EX13.6/EX13_6.sce
new file mode 100755
index 000000000..460417e36
--- /dev/null
+++ b/1757/CH13/EX13.6/EX13_6.sce
@@ -0,0 +1,11 @@
+//Example13.6 // Determine the frequency response of the astable multivibrator circuit
+clc;
+clear;
+close;
+Vsat = 2.5 ;
+VT = 0.7 ;
+
+// The frequency of the astable multivibrator is
+//f = (1/(2*R*C*log((Vsat+VT)/(Vsat-VT))));
+
+disp('The frequency of the astable multivibrator is= 0.87/RC ');
diff --git a/1757/CH13/EX13.7/EX13_7.sce b/1757/CH13/EX13.7/EX13_7.sce
new file mode 100755
index 000000000..690129257
--- /dev/null
+++ b/1757/CH13/EX13.7/EX13_7.sce
@@ -0,0 +1,20 @@
+//Example13.7 // Design astable multivibrator for the frequency f = 10 KHz
+clc;
+clear;
+close
+f = 10 ; // K ohm
+Vsat = 3 ;
+VT = 0.7 ;
+
+// The saturation voltage of an astable multivibrator is defined as
+// Vsat = (R1+R2/R1)+VT ;
+R1 = 10 ; // K ohm we choose
+R2 = ((Vsat/VT)-1)*R1 ;
+disp('The value of resistance R2 is = '+string(R2)+ ' K ohm ');
+
+// The frequency of an astable multivibrator is defined as
+C = 0.01 ; // uF
+// f = (1/(2*R*C*log(1+(2*R1/R2))));
+
+R = 1/(2*f*C*log(1+2*R1/R2));
+disp('The value of resistor R is = '+string(R)+ ' K ohm');
diff --git a/1757/CH13/EX13.8/EX13_8.sce b/1757/CH13/EX13.8/EX13_8.sce
new file mode 100755
index 000000000..f0c62ef74
--- /dev/null
+++ b/1757/CH13/EX13.8/EX13_8.sce
@@ -0,0 +1,11 @@
+//Example13.8 // to design astable multivibrator
+clc;
+clear;
+close;
+f = 25*10^3 ;
+
+// The output frequency of practical astable multivibrator is defined as
+// f = 1/(2*R*C);
+C = 0.1*10^-6 ; // uF we choose
+R = 1/(2*f*C);
+disp('The value of resistor R is = '+string(R)+ ' ohm ' );
diff --git a/1757/CH13/EX13.9/EX13_9.sce b/1757/CH13/EX13.9/EX13_9.sce
new file mode 100755
index 000000000..e83c1b770
--- /dev/null
+++ b/1757/CH13/EX13.9/EX13_9.sce
@@ -0,0 +1,18 @@
+
+//Example13.9 // Design a monostable circuit with frequency f = 25 KHz
+clc;
+clear;
+close;
+f =25*10^3 ; // Hz
+
+// The output frequency of monostable multivibrator is defined as
+// f = 1/(0.69*R*C);
+C = 0.1*10^-6 ;
+R = 1/(0.69*f*C);
+disp('The value of resistance R is = '+string(R)+ ' ohm ');
+
+// In the practical monostable multivibrator
+// ln(1+(R2/R1))= 0.69 ;
+R1 = 10*10^3 ; // we choose
+R2 = R1*(1.99372-1);
+disp('The value of resistance R2 is = '+string(R2/1000)+ ' K ohm '); // Round Off Error