summaryrefslogtreecommitdiff
path: root/1754/CH1
diff options
context:
space:
mode:
Diffstat (limited to '1754/CH1')
-rwxr-xr-x1754/CH1/EX1.1/Exa1_1.sce17
-rwxr-xr-x1754/CH1/EX1.10/Exa1_10.sce13
-rwxr-xr-x1754/CH1/EX1.11/Exa1_11.sce28
-rwxr-xr-x1754/CH1/EX1.12/Exa1_12.sce13
-rwxr-xr-x1754/CH1/EX1.13/Exa1_13.sce14
-rwxr-xr-x1754/CH1/EX1.14/Exa1_14.sce16
-rwxr-xr-x1754/CH1/EX1.15/Exa1_15.sce9
-rwxr-xr-x1754/CH1/EX1.2/Exa1_2.sce15
-rwxr-xr-x1754/CH1/EX1.3/Exa1_3.sce22
-rwxr-xr-x1754/CH1/EX1.4/Exa1_4.sce25
-rwxr-xr-x1754/CH1/EX1.5/Exa1_5.sce15
-rwxr-xr-x1754/CH1/EX1.6/Exa1_6.sce22
-rwxr-xr-x1754/CH1/EX1.7/Exa1_7.sce15
-rwxr-xr-x1754/CH1/EX1.8/Exa1_8.sce18
-rwxr-xr-x1754/CH1/EX1.9/Exa1_9.sce24
15 files changed, 266 insertions, 0 deletions
diff --git a/1754/CH1/EX1.1/Exa1_1.sce b/1754/CH1/EX1.1/Exa1_1.sce
new file mode 100755
index 000000000..4b41d2ca2
--- /dev/null
+++ b/1754/CH1/EX1.1/Exa1_1.sce
@@ -0,0 +1,17 @@
+//Exa 1.1
+clc;
+clear;
+close;
+//Given data
+I=40;//in mA
+V=0.25;//in Volt
+T=20;//in degree C
+T=T+273;//in Kelvin
+ETA=1;//For Ge
+e=1.6*10^-19;//in Coulamb(electronic charge)
+k=1.38*10^-23;//in J/K(Boltzman Constant)
+//Formula : I=Io*(exp(%e*V/(ETA*k*T))-1)
+y=(e*V/(ETA*k*T));//Assumed
+y=round(y);
+Io=I*10^-3/(exp(y)-1);//in mA
+disp(Io*10^6,"Reverse saturation current in micro Ampere : ");
diff --git a/1754/CH1/EX1.10/Exa1_10.sce b/1754/CH1/EX1.10/Exa1_10.sce
new file mode 100755
index 000000000..b6b39d92b
--- /dev/null
+++ b/1754/CH1/EX1.10/Exa1_10.sce
@@ -0,0 +1,13 @@
+//Exa 1.10
+clc;
+clear;
+close;
+//Given data
+VDmin=1.5;//in Volt
+VDmax=2.3;//in Volt
+VS=5;//in Volt
+RS=270;//in Ohm
+Imin=(VS-VDmax)/RS;//in Ampere
+disp(Imin*1000,"Minimum value of LED current in mA : ");
+Imax=(VS-VDmin)/RS;//in Ampere
+disp(round(Imax*1000),"Maximum value of LED current in mA : "); \ No newline at end of file
diff --git a/1754/CH1/EX1.11/Exa1_11.sce b/1754/CH1/EX1.11/Exa1_11.sce
new file mode 100755
index 000000000..d819b0426
--- /dev/null
+++ b/1754/CH1/EX1.11/Exa1_11.sce
@@ -0,0 +1,28 @@
+//Exa 1.11
+clc;
+clear;
+close;
+//Given data
+format('v',6);
+C1min=10;//in pF
+C2max=50;//in pF
+L=5;//in mH
+L=L*10^-3;//in H
+//Formula : CT=C1*C2/(C1+C2)
+//Minimum
+C1=10;//in pF
+C2=10;//in pF
+CTmin=C1*C2/(C1+C2);//in pF
+CTmin=CTmin*10^-12;//in F
+//Maximum
+C1=50;//in pF
+C2=50;//in pF
+CTmax=C1*C2/(C1+C2);//in pF
+CTmax=CTmax*10^-12;//in F
+//Formula : f=1/(2*%pi*sqrt(L*C))
+//maximum :
+fmax=1/(2*%pi*sqrt(L*CTmin));
+//minimum :
+fmin=1/(2*%pi*sqrt(L*CTmax));
+disp("The frequency of tuning circuit ranges from "+string(fmin/10^6)+"MHz to "+string(fmax/10^6)+"MHz.");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1754/CH1/EX1.12/Exa1_12.sce b/1754/CH1/EX1.12/Exa1_12.sce
new file mode 100755
index 000000000..76e5ef4ea
--- /dev/null
+++ b/1754/CH1/EX1.12/Exa1_12.sce
@@ -0,0 +1,13 @@
+//Exa 1.12
+clc;
+clear;
+close;
+//Given data
+format('v',6);
+C1=21;//in pF
+V1=4;//in volt
+V2=9;//in volt
+disp("C is proportional to 1/sqrt(V)");
+disp("So, C2/C1=sqrt(V1/V2)");
+C2=sqrt(V1/V2)*C1;//in pF
+disp(C2,"At reverse bias 9V, Diode capacitance in pF : ");
diff --git a/1754/CH1/EX1.13/Exa1_13.sce b/1754/CH1/EX1.13/Exa1_13.sce
new file mode 100755
index 000000000..823ee8650
--- /dev/null
+++ b/1754/CH1/EX1.13/Exa1_13.sce
@@ -0,0 +1,14 @@
+//Exa 1.13
+clc;
+clear;
+close;
+//Given data
+format('v',6);
+R=0.90;//in A/W
+Pop=1;//in mW
+//Part (i)
+IP=R*Pop;//in mA
+disp(IP,"Power of incident light 1mW, Photocurrent in mA is :");
+//Part (ii)
+disp("Here IP is not proportional to Pop(for Pop>1.5mW)");
+disp("Hence Photourrent can not be calculated.");
diff --git a/1754/CH1/EX1.14/Exa1_14.sce b/1754/CH1/EX1.14/Exa1_14.sce
new file mode 100755
index 000000000..26b1dd688
--- /dev/null
+++ b/1754/CH1/EX1.14/Exa1_14.sce
@@ -0,0 +1,16 @@
+//Exa 1.14
+clc;
+clear;
+close;
+//Given data
+format('v',7);
+ETA=70;//in %
+Eg=0.75;//in eV
+Eg=Eg*1.6*10^-19;//in Joule
+h=6.63*10^-34;//Planks constant in J-s
+c=3*10^8;//speed of light in m/s
+e=1.6*10^-19;//in coulamb
+lambda=h*c/Eg;//in meter
+disp(lambda*10^9,"Wavelength in nm :");
+R=(ETA/100)*e*lambda/(h*c);//in A/W
+disp(R,"Responsivity of InGaAs photodiode in A/W : "); \ No newline at end of file
diff --git a/1754/CH1/EX1.15/Exa1_15.sce b/1754/CH1/EX1.15/Exa1_15.sce
new file mode 100755
index 000000000..7c9706c7a
--- /dev/null
+++ b/1754/CH1/EX1.15/Exa1_15.sce
@@ -0,0 +1,9 @@
+//Exa 1.15
+clc;
+clear;
+close;
+//Given data
+W1=2.5;//in eV
+W2=1.9;//in eV
+ContactPotential=W1-W2;//in Volt
+disp(ContactPotential,"Contact potential in Volts : ");
diff --git a/1754/CH1/EX1.2/Exa1_2.sce b/1754/CH1/EX1.2/Exa1_2.sce
new file mode 100755
index 000000000..c894a04bf
--- /dev/null
+++ b/1754/CH1/EX1.2/Exa1_2.sce
@@ -0,0 +1,15 @@
+//Exa 1.2
+clc;
+clear;
+close;
+//Given data
+Io=10;//in uA
+I=1;//in Ampere
+ETA=2;//For Si
+T=27;//in degree C
+T=T+273;//in Kelvin
+e=1.6*10^-19;//in Coulamb(electronic charge)
+k=1.38*10^-23;//in J/K(Boltzman Constant)
+//Formula : I=Io*(exp(%e*V/(ETA*k*T))-1)
+V=(ETA*k*T/e)*log(I/(Io*10^-6)+1);//in Volt
+disp(V,"Forward Voltage across the diode in Volt :"); \ No newline at end of file
diff --git a/1754/CH1/EX1.3/Exa1_3.sce b/1754/CH1/EX1.3/Exa1_3.sce
new file mode 100755
index 000000000..2b63508ae
--- /dev/null
+++ b/1754/CH1/EX1.3/Exa1_3.sce
@@ -0,0 +1,22 @@
+//Exa 1.3
+clc;
+clear;
+close;
+//Given data
+RL=1;//in kOhm
+//rf<<RL
+Vrms=200;//in Volt
+//Part (i)
+Vo=Vrms*sqrt(2);//in Volt
+Idc=Vo/(RL*10^3*%pi);//in Ampere
+disp(round(Idc*10^3),"DC current in load in mA :");
+//Part (ii)
+Vdc=RL*10^3*Idc;//in Volt
+disp(round(Vdc),"DC voltage across load in volt :");
+//Part (iii)
+//Gamma=sqrt((Irms/Idc)^2-1)=sqrt((Io/2)/(Io/%pi)-1)=sqrt((%pi/2)^2-1)
+Gamma=sqrt((%pi/2)^2-1);//unitless
+disp(Gamma,"Ripple factor : ");
+//Part (iv)
+PIV=Vrms*sqrt(2);//in volt
+disp(PIV,"Peak Inverse Voltage in volt :"); \ No newline at end of file
diff --git a/1754/CH1/EX1.4/Exa1_4.sce b/1754/CH1/EX1.4/Exa1_4.sce
new file mode 100755
index 000000000..453b58d0b
--- /dev/null
+++ b/1754/CH1/EX1.4/Exa1_4.sce
@@ -0,0 +1,25 @@
+//Exa 1.4
+clc;
+clear;
+close;
+//Given data
+rf=20;//in ohm
+RL=980;//in Ohm
+Vrms=50;//in Volt
+Vo=Vrms*sqrt(2);//in Volt
+Io=Vo/(RL+rf);//in Ampere
+//Part (i)
+Idc=2*Io/%pi;//in Ampere
+disp(round(Idc*10^3),"Average DC current in mA :");
+//Part (ii)
+Irms=Io/sqrt(2);//in Ampere
+disp(Irms*1000,"rms value of load current in mA :")
+//Part (iii)
+Vdc=RL*Idc;//in Volt
+disp(Vdc,"DC output voltage in volt :");
+//Part (iv)
+ETA=(Idc^2*RL/(Irms^2*(RL+rf)))*100;//Rectification Efficiency in %
+disp("Rectification Efficiency is "+string(ETA)+" %")
+//Part (v)
+PIV=2*Vo;//in volt
+disp(PIV,"Peak Inverse Voltage in volt :"); \ No newline at end of file
diff --git a/1754/CH1/EX1.5/Exa1_5.sce b/1754/CH1/EX1.5/Exa1_5.sce
new file mode 100755
index 000000000..867f1f810
--- /dev/null
+++ b/1754/CH1/EX1.5/Exa1_5.sce
@@ -0,0 +1,15 @@
+//Exa 1.5
+clc;
+clear;
+close;
+//Given data
+Vin=40;//in volt
+VZ=10;//in volt
+Vo=10;//in volt
+IZmax=50;//in mA
+IL=0;//in mA
+//Formula : I=IZ+IL=IZmax+0
+I=IZmax+0;//in mA
+//Formula : VZ=Vin-R*I
+Rmin=(Vin-VZ)/(I*10^-3);//in Ohm
+disp(Rmin,"Minimum value of resistance in Ohm : "); \ No newline at end of file
diff --git a/1754/CH1/EX1.6/Exa1_6.sce b/1754/CH1/EX1.6/Exa1_6.sce
new file mode 100755
index 000000000..1c022c636
--- /dev/null
+++ b/1754/CH1/EX1.6/Exa1_6.sce
@@ -0,0 +1,22 @@
+//Exa 1.6
+clc;
+clear;
+close;
+//Given data
+Vmin=15;//Minimum input voltage in volt
+VZ=6.8;//Voltage across zener in volt
+Vo=VZ;//output voltage in volt
+Vsr1=Vmin-Vo;//Voltage aross series resistance in volt
+disp("If R is the series esistance, Total current in series resistance in Ampere : I=Vsr/R=8.2/R ");
+ILmin=5;//in mA
+disp("current in zener diode in Ampere :IZ=I-IL=(8.2/R-IL*10-3) eqn(1)");
+Vmax=20;//mximum output voltage
+Vo=VZ;//output voltage in volt
+Vsr2=Vmax-Vo;//Voltage aross series resistance in volt
+disp("Current in series resistance circuit in Ampere : I=Vsr/R");
+ILmax=15;//in mA
+disp("current in zener diode in Ampere :IZ=I-IL=(Rs/R-IL*10-3) eqn(2)")
+disp("For Zener diode to work as voltage regulator,(1) and (2) must be same.");
+disp("(8.2/R-IL*10-3)=(13.2/R-IL*10-3)")
+R=(Vsr2-Vsr1)/(ILmax*10^-3-ILmin*10^-3);//in Ohm
+disp(R,"Required value of Series Resistor in ohm : "); \ No newline at end of file
diff --git a/1754/CH1/EX1.7/Exa1_7.sce b/1754/CH1/EX1.7/Exa1_7.sce
new file mode 100755
index 000000000..a2b38107b
--- /dev/null
+++ b/1754/CH1/EX1.7/Exa1_7.sce
@@ -0,0 +1,15 @@
+//Exa 1.7
+clc;
+clear;
+close;
+//Given data
+Vin=18;//in volt
+IZ=20;//in mA
+ILav=(5+35)/2;//in mA
+VZ=12;//in volt
+Vo=12;//in volt
+I=IZ+ILav;//in mA
+R=(Vin-Vo)/(I*10^-3);//in Ohm
+disp(R,"Current limiting resistance in Ohm : ");
+P=(I*10^-3)^2*R;//in Watts
+disp(P,"Power disspation in resistance in Watt : "); \ No newline at end of file
diff --git a/1754/CH1/EX1.8/Exa1_8.sce b/1754/CH1/EX1.8/Exa1_8.sce
new file mode 100755
index 000000000..d94638d52
--- /dev/null
+++ b/1754/CH1/EX1.8/Exa1_8.sce
@@ -0,0 +1,18 @@
+//Exa 1.8
+clc;
+clear;
+close;
+//Given data
+R=1;//in kOhm
+RL=5;//in kOhm
+VZ=10;//in volt
+Vo=10;//in volt
+P=250;//in mW
+IL=Vo/RL;//in mA
+IZmin=0;//in mA
+IZmax=P/VZ;//in mA
+Imin=IZmin+IL;//in mA
+Imax=IZmax+IL;//in mA
+Vin_min=VZ+Imin*10^-3*R*10^3;//in volt
+Vin_max=VZ+Imax*10^-3*R*10^3;//in volt
+disp("The input voltage ranges from "+string(Vin_min)+"V to "+string(Vin_max)+"V"); \ No newline at end of file
diff --git a/1754/CH1/EX1.9/Exa1_9.sce b/1754/CH1/EX1.9/Exa1_9.sce
new file mode 100755
index 000000000..ceb7e46f5
--- /dev/null
+++ b/1754/CH1/EX1.9/Exa1_9.sce
@@ -0,0 +1,24 @@
+//Exa 1.9
+clc;
+clear;
+close;
+//Given data
+R=5;//in kOhm
+R=R*1000;//in Ohm
+RL=10;//in kOhm
+RL=RL*1000;//in Ohm
+Vin=120;//in Volt
+VZ=50;//in Volt
+//Part (i)
+Vo=VZ;//in Volt
+disp(Vo,"Output voltage in volt : ");
+//Part (ii)
+VR=Vin-VZ;//in Volt
+disp(VR,"Voltage drop across series resistance in volt :");
+//Part (iii)
+IL=Vo/RL;//in Ampere
+disp(IL*1000,"Load Current in mA :");
+I=VR/R;//in Ampere
+disp(I*1000,"Current through resistance R in mA :");
+IZ=I-IL;//in Ampere
+disp(IZ*1000,"Load Current in mA :"); \ No newline at end of file