diff options
Diffstat (limited to '1752/CH10')
-rwxr-xr-x | 1752/CH10/EX10.1/exa_10_1.sce | 23 | ||||
-rwxr-xr-x | 1752/CH10/EX10.2/exa_10_2.sce | 16 | ||||
-rwxr-xr-x | 1752/CH10/EX10.3/exa_10_3.sce | 27 | ||||
-rwxr-xr-x | 1752/CH10/EX10.4/exa_10_4.sce | 24 | ||||
-rwxr-xr-x | 1752/CH10/EX10.5/exa_10_5.sce | 27 | ||||
-rwxr-xr-x | 1752/CH10/EX10.6/exa_10_6.sce | 44 | ||||
-rwxr-xr-x | 1752/CH10/EX10.7/exa_10_7.sce | 36 | ||||
-rwxr-xr-x | 1752/CH10/EX10.8/exa_10_8.sce | 47 |
8 files changed, 244 insertions, 0 deletions
diff --git a/1752/CH10/EX10.1/exa_10_1.sce b/1752/CH10/EX10.1/exa_10_1.sce new file mode 100755 index 000000000..2f3cabfc9 --- /dev/null +++ b/1752/CH10/EX10.1/exa_10_1.sce @@ -0,0 +1,23 @@ +//Exa 10.1
+clc;
+clear;
+close;
+//given data
+format('v',13);
+P1=4;// in bar
+P2=2;// in bar
+T=25;// in degree C
+Dhp=9*10^-8;// in m^2/s
+S=3*10^-3;// in kg mole/m^3 bar
+del_x=0.5*10^-3;// thickness in m
+//(a) The molar concentration of a gas in terms of solubility
+CH1=S*P1;// in kg mole/m^3
+CH2=S*P2;// in kg mole/m^3
+//(b) Molar diffusion flux of hydrogen through plastic memberence is given by Fick's law of diffision
+//N_H= N_h/A = Dhp*(CH1-CH2)/del_x;
+N_H= Dhp*(CH1-CH2)/del_x;// in kg mole/s-m^2
+disp(N_H,"Molar diffusion flux of hydrogen through the membrane in kg mole/s-m^2");
+//Mass_d_Flux= N_H*Molecular_Weight
+Molecular_Weight=2;
+Mass_d_Flux= N_H*Molecular_Weight
+disp(Mass_d_Flux,"Molar diffusion flux in kg/s-m^2");
diff --git a/1752/CH10/EX10.2/exa_10_2.sce b/1752/CH10/EX10.2/exa_10_2.sce new file mode 100755 index 000000000..26a0bd83b --- /dev/null +++ b/1752/CH10/EX10.2/exa_10_2.sce @@ -0,0 +1,16 @@ +//Exa 10.2
+clc;
+clear;
+close;
+//given data
+format('v',13);
+T=25;// in degree C
+T=T+273;// in K
+P=1;
+V1=12;//Molecular volume of H2 in cm^3/gm mole
+V2=30;//Molecular volume of Air in cm^3/gm mole
+M1=2;// Molecular weight of H2
+M2=29;// Molecular weight of Air
+//The diffusion coefficient for gases in terms of molecular volumes may be express as
+D_AB= .0043*T^(3/2)/(P*(V1^(1/3)+V2^(1/3)))*(1/M1+1/M2)^(1/2);
+disp(D_AB,"The diffusion coefficient for gases in terms of molecular volumes in cm^2/sec");
diff --git a/1752/CH10/EX10.3/exa_10_3.sce b/1752/CH10/EX10.3/exa_10_3.sce new file mode 100755 index 000000000..b1f1f50bb --- /dev/null +++ b/1752/CH10/EX10.3/exa_10_3.sce @@ -0,0 +1,27 @@ +//Exa 10.3
+clc;
+clear;
+close;
+//given data
+format('v',13);
+T=300;// temp of gas mixture in K
+D_HN2=18*10^-6;// in m^2/s at 300 K, 1 bar
+T1=300;// in K
+D_HO2=16*10^-6;// in m^2/s at 273 K, 1 bar
+T2=273;// in K
+O_2=0.2;
+N_2=0.7;
+H_2=0.1;
+//The diffusivity at the mixture temperature and pressure are calculated as
+// D1/D2 = (T1/T2)^(3/2)*(P2/P1)
+D_HO2= (T/T2)^(3/2)*1/4*D_HO2;
+D_HN2= (T/T1)^(3/2)*1/4*D_HN2;
+//The composition of oxygen and nitrogen on a H2 free basis is
+x_O= O_2/(1-H_2);
+x_N= N_2/(1-H_2);
+
+// The effective diffusivity for the gas mixture at given temperature and pressure is
+ D= 1/(x_O/D_HO2+x_N/D_HN2);// in m^2/s
+ disp(D,"Effective diffusivity in m^2/s")
+
+
diff --git a/1752/CH10/EX10.4/exa_10_4.sce b/1752/CH10/EX10.4/exa_10_4.sce new file mode 100755 index 000000000..e97db443e --- /dev/null +++ b/1752/CH10/EX10.4/exa_10_4.sce @@ -0,0 +1,24 @@ +//Exa 10.4
+clc;
+clear;
+close;
+//given data
+format('v',9);
+d=3;// in mm
+d=d*10^-3;// in meter
+T=25;// in °C
+T=T+273;// in K
+D= 0.4*10^-4;// in m^2/s
+R= 8314;
+P_A1=1;// in atm
+P_A1=P_A1*10^5;// in w/m^2
+P_A2=0;
+C_A2=0;
+x2= 15;// in meter
+x1= 0;
+A= %pi/4*d^2;
+M_A= D*A/(R*T)*(P_A1-P_A2)/(x2-x1);// in kg mole/sec
+N_B= M_A;
+M_B= M_A*29;// in kg/sec
+disp(N_B,"Value of N_B in kg mole/sec")
+disp(M_B,"Value of M_B in kg /sec")
diff --git a/1752/CH10/EX10.5/exa_10_5.sce b/1752/CH10/EX10.5/exa_10_5.sce new file mode 100755 index 000000000..d73211495 --- /dev/null +++ b/1752/CH10/EX10.5/exa_10_5.sce @@ -0,0 +1,27 @@ +//Exa 10.5
+clc;
+clear;
+close;
+//given data
+format('v',13);
+P=3;// in atm
+P=P*10^5;// in N/m^2
+r1=10;// in mm
+r1=r1*10^-3;// in m
+r2=20;// in mm
+r2=r2*10^-3;// in m
+R=4160;// in J/kg-K
+T=303;// in K
+D=3*10^-8;// in m^2/s
+S=3*0.05; // Solubility of hydrogen at a pressure of 3 atm in m^3/m^3 of rubber tubing
+del_x=r2-r1;// in m
+L=1;// in m
+Am=2*%pi*L*del_x/log(r2/r1);
+//Formula P*V= m*R*T
+V=S;
+m=P*V/(R*T);// in kg/m^3 of rubber tubing at the inner surface of the pipe
+C_A1=m;
+C_A2=0;
+//Diffusion flux through the cylinder is given
+M=D*(C_A1-C_A2)*Am/del_x;
+disp(M,"Diffusion flux through the cylinder in kg/sm")
diff --git a/1752/CH10/EX10.6/exa_10_6.sce b/1752/CH10/EX10.6/exa_10_6.sce new file mode 100755 index 000000000..d4734a145 --- /dev/null +++ b/1752/CH10/EX10.6/exa_10_6.sce @@ -0,0 +1,44 @@ +//Exa 10.6
+clc;
+clear;
+close;
+//given data
+format('v',15);
+R=4160;// in J/kg-K
+M=2;
+D_AB=1.944*10^-8;// in m^2/s
+R_H2=R/M;
+S=2*0.0532; // Solubility of hydrogen at a pressure of 2 atm in cm^3/cm^3 of pipe
+P=2;// in atm
+P=P*1.03*10^5;// N/m^2
+T=25;// in degree C
+T=T+273;// in K
+r1=2.5;// in mm
+r1=r1*10^-3;// in m
+r2=5;// in mm
+r2=r2*10^-3;// in m
+del_x=r2-r1;// in m
+L=1;// in m
+//Formula P*V= m*R*T
+V=S;
+m=P*V/(R*T);// in kg/m^3 of pipe
+// So, Concentration of H2 at inner surface of the pipe
+C_A1=0.0176;// in kg/m^3
+// The resistance of diffusion of H2 away from the outer surface is negligible i.e.
+C_A2=0;
+Am=2*%pi*L*del_x/log(r2/r1);
+// Loss of H2 by diffusion
+M_A= D_AB*(C_A1-C_A2)*Am/del_x;
+disp(M_A,"Loss of H2 by diffusion in kg/s");
+
+
+//Note: In the book , they put wrong value of C_A1 to calculate M_A, so the answer in the book is wrong
+
+
+
+
+
+
+
+
+
diff --git a/1752/CH10/EX10.7/exa_10_7.sce b/1752/CH10/EX10.7/exa_10_7.sce new file mode 100755 index 000000000..f34fc7b7c --- /dev/null +++ b/1752/CH10/EX10.7/exa_10_7.sce @@ -0,0 +1,36 @@ +//Exa 10.7
+clc;
+clear;
+close;
+//given data
+format('v',15);
+Px1= 0.14;// in bar
+Px2= 0;
+P=1.013;// in bar
+Py1=P-Px1; // in bar
+Py2=P-Px2; // in bar
+D=8.5*10^-6;// in m^2/s
+d=5;// diameter in meter
+L=1;// in mm
+L=L*10^-3;//in meter
+M=78;// molecular weight
+Am_x= 1/4*%pi*d^2*M;
+R=8314;
+del_x=3;// thickness in mm
+del_x=del_x*10^-3;// in m
+T=20;// in degree C
+T=T+273;// in K
+P=P*10^5;// in N/m^2
+m_x= D*Am_x*P*log(Py2/Py1)/(R*T*del_x);
+// The mass of the benzene to be evaporated
+mass= 1/4*%pi*d^2*L;
+density=880;// in kg/m^3
+m_b= mass*density;
+toh=m_b/m_x;// in sec
+disp(toh,"Time taken for the entire organic compound to evaporate in seconds")
+
+
+// Note: Answer in the book is wrong
+
+
+
diff --git a/1752/CH10/EX10.8/exa_10_8.sce b/1752/CH10/EX10.8/exa_10_8.sce new file mode 100755 index 000000000..d11e05fe6 --- /dev/null +++ b/1752/CH10/EX10.8/exa_10_8.sce @@ -0,0 +1,47 @@ +//Exa 10.8
+clc;
+clear;
+close;
+//given data
+format('v',8);
+A=0.5;// in m^2
+Pi=2.2;// in bar
+Pi=Pi*10^5;// in N/m^2
+Pf=2.18;// in bar
+Pf=Pf*10^5;// in N/m^2
+
+T=300;// in K
+S=0.072;// in m^3
+V=0.028;// in m^3
+L=10;// in mm
+L=L*10^-3;// in meter
+R=287;
+// Diffusivity of air in rubber D
+// Initial mass of air in the tube
+mi= Pi*V/(R*T);// in kg
+//final mass of air in the tube
+mf= Pf*V/(R*T);// in kg
+// Mass of air escaped
+ ma = mi-mf;//in kg
+// Formula Na = ma/A = mass of air escaped / Time elapsed * area
+A=6*24*3600*0.5;
+Na = ma/A;//in kg/sm^2
+// Solubility of air should be calculated at mean temperature
+S_meanTemperature=(2.2+2.18)/2;// in bar
+//Solubility of air at the mean inside Pressure is
+S=S*S_meanTemperature;// in m^3/m^3 of rubber
+disp("The air which escapes to atmosphere will be 1 bar and its solubility will remain at 0.72 m^3 of air per m^3 of rubber");
+V1=S;
+V2=0.072;
+T1=T;
+T2=T;
+P1=2.19*10^5;// in N/m^2
+P2=1*10^5;// in N/m^2
+// The corresponding mass concentration at the inner and outer surface of the tube, from gas equation are calculated as
+Ca1= P1*V1/(R*T1);// in kg/m^3
+Ca2= P2*V2/(R*T2);// in kg/m^3
+// The diffusion flux rate of air through the rubber is given by
+// Na = ma/A = D*(Ca1-Ca2)/del_x, here
+del_x=L;
+D=Na*del_x/(Ca1-Ca2);
+disp(D,"Diffusivity of air in rubber in m^2/s");
|