diff options
Diffstat (limited to '1739/CH2')
-rwxr-xr-x | 1739/CH2/EX2.1/Exa2_1.sce | 10 | ||||
-rwxr-xr-x | 1739/CH2/EX2.10/Exa2_10.sce | 18 | ||||
-rwxr-xr-x | 1739/CH2/EX2.11/Exa2_11.sce | 16 | ||||
-rwxr-xr-x | 1739/CH2/EX2.12/Exa2_12.sce | 14 | ||||
-rwxr-xr-x | 1739/CH2/EX2.13/Exa2_13.sce | 11 | ||||
-rwxr-xr-x | 1739/CH2/EX2.14/Exa2_14.sce | 12 | ||||
-rwxr-xr-x | 1739/CH2/EX2.15/Exa2_15.sce | 19 | ||||
-rwxr-xr-x | 1739/CH2/EX2.16/Exa2_16.sce | 12 | ||||
-rwxr-xr-x | 1739/CH2/EX2.17/Exa2_17.sce | 21 | ||||
-rwxr-xr-x | 1739/CH2/EX2.18/Exa2_18.sce | 20 | ||||
-rwxr-xr-x | 1739/CH2/EX2.19/Exa2_19.sce | 12 | ||||
-rwxr-xr-x | 1739/CH2/EX2.2/Exa2_2.sce | 11 | ||||
-rwxr-xr-x | 1739/CH2/EX2.20/Exa2_20.sce | 21 | ||||
-rwxr-xr-x | 1739/CH2/EX2.21/Exa2_21.sce | 15 | ||||
-rwxr-xr-x | 1739/CH2/EX2.23/Exa2_23.sce | 12 | ||||
-rwxr-xr-x | 1739/CH2/EX2.24/Exa2_24.sce | 14 | ||||
-rwxr-xr-x | 1739/CH2/EX2.25/Exa2_25.sce | 12 | ||||
-rwxr-xr-x | 1739/CH2/EX2.3/Exa2_3.sce | 11 | ||||
-rwxr-xr-x | 1739/CH2/EX2.4/Exa2_4.sce | 15 | ||||
-rwxr-xr-x | 1739/CH2/EX2.5/Exa2_5.sce | 19 | ||||
-rwxr-xr-x | 1739/CH2/EX2.6/Exa2_6.sce | 18 | ||||
-rwxr-xr-x | 1739/CH2/EX2.7/Exa2_7.sce | 11 | ||||
-rwxr-xr-x | 1739/CH2/EX2.8/Exa2_8.sce | 20 | ||||
-rwxr-xr-x | 1739/CH2/EX2.9/Exa2_9.sce | 13 |
24 files changed, 357 insertions, 0 deletions
diff --git a/1739/CH2/EX2.1/Exa2_1.sce b/1739/CH2/EX2.1/Exa2_1.sce new file mode 100755 index 000000000..fc0c6621a --- /dev/null +++ b/1739/CH2/EX2.1/Exa2_1.sce @@ -0,0 +1,10 @@ +//Exa 2.1
+clc;
+clear;
+close;
+//Given data :
+n1=1.40;//refractive index
+delta=1;//relative refractive index difference in %
+//Formula : n2/n1=1-delta
+n2=n1*(1-delta/100);//refractive index(unitless)
+disp(n2,"Refractive index of cladding : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.10/Exa2_10.sce b/1739/CH2/EX2.10/Exa2_10.sce new file mode 100755 index 000000000..2104ad5ae --- /dev/null +++ b/1739/CH2/EX2.10/Exa2_10.sce @@ -0,0 +1,18 @@ +//Exa 2.10
+clc;
+clear;
+close;
+//Given data :
+fi_o=22;//in Degree
+delta=3;//relative refractive index difference in %
+//Part (a) :
+//Formula : NA=sin(fi_o).....(max)
+NA=sind(fi_o);//Numerical Aperture(Unitless)
+disp(NA,"Numerical Aperture : ");
+//Part (b) :
+//Formula : n2/n1=1-delta
+//Let say, n2/n1=n2byn1
+n2byn1=(1-delta/100);//refractive index(unitless)
+//Formula : sin(fi_C)=n2/n1;
+fi_c=asind(n2byn1);//in degree
+disp(fi_c,"Critical Angle at core cladding interface in Degree : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.11/Exa2_11.sce b/1739/CH2/EX2.11/Exa2_11.sce new file mode 100755 index 000000000..d17c5c47f --- /dev/null +++ b/1739/CH2/EX2.11/Exa2_11.sce @@ -0,0 +1,16 @@ +//Exa 2.11
+clc;
+clear;
+close;
+//Given data :
+format('v',9)
+delta=0.45;//relative refractive index difference in %
+fi_o=0.115;//in Radian
+c=3*10^8;//speed of light in m/s
+//Formula : NA=sin(fi_o).....(max)
+NA=sin(fi_o);//Numerical Aperture(Unitless)
+//Formula : NA=n1*sqrt(2*delta)
+n1=NA/sqrt(2*delta/100);//unitless
+//Formula : n1=c/v;
+v=c/n1;//in m/s
+disp("Speed of light in fibre core is "+string(v)+" m/s");
\ No newline at end of file diff --git a/1739/CH2/EX2.12/Exa2_12.sce b/1739/CH2/EX2.12/Exa2_12.sce new file mode 100755 index 000000000..0b12ff3ad --- /dev/null +++ b/1739/CH2/EX2.12/Exa2_12.sce @@ -0,0 +1,14 @@ +//Exa 2.12
+clc;
+clear;
+close;
+//Given data :
+n1=1.5;//Unitless
+delta=1;//relative refractive index difference in %
+lambda=1.3;//in um
+N=1100;//No. of modes
+//Formula : v=2*%pi*a*n1*NA/lambda;
+//NA=sqrt(2*delta)
+//v=sqrt(2*N)
+a=(sqrt(2*N)*lambda)/(2*%pi*n1*sqrt(2*delta/100));//Normalized frequency
+disp(2*a,"Diameter of the fiber core in micro meter is : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.13/Exa2_13.sce b/1739/CH2/EX2.13/Exa2_13.sce new file mode 100755 index 000000000..fc9dceb09 --- /dev/null +++ b/1739/CH2/EX2.13/Exa2_13.sce @@ -0,0 +1,11 @@ +//Exa 2.13
+clc;
+clear;
+close;
+//Given data :
+format('v',5)
+n1=1.52;//unitless
+fi_o=8;//in Degree
+//Formula : sin(fi_o)=n1*sqrt(2*delta)
+delta=(sind(fi_o)/n1)^2/2;//Relative refractive index
+disp("The value of relative refractive index difference is "+string(delta*100)+"%");
\ No newline at end of file diff --git a/1739/CH2/EX2.14/Exa2_14.sce b/1739/CH2/EX2.14/Exa2_14.sce new file mode 100755 index 000000000..ea41dbe8f --- /dev/null +++ b/1739/CH2/EX2.14/Exa2_14.sce @@ -0,0 +1,12 @@ +//Exa 2.14
+clc;
+clear;
+close;
+//Given data :
+N=700;//No. of modes
+d=30;//in um
+a=d/2;//in um
+NA=0.62;//Numerical Aperture
+//Formula : v=2*sqrt(N) and v=2*%pi*a*NA/lambda
+lambda=2*%pi*a*NA/(2*sqrt(N));//in um
+disp(lambda,"Wavelength of light propagating in fibre in micro meter : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.15/Exa2_15.sce b/1739/CH2/EX2.15/Exa2_15.sce new file mode 100755 index 000000000..595009b46 --- /dev/null +++ b/1739/CH2/EX2.15/Exa2_15.sce @@ -0,0 +1,19 @@ +//Exa 2.15
+clc;
+clear;
+close;
+//Given data :
+n1=1.5;//unitless
+alfa=2;//characteristic index profile
+d=40;//in um
+a=d/2;//in um
+//Part (a) :
+lambda=1.3;//in um
+delta=1;
+//Formula : v=2*%pi*a*NA/lambda=2*%pi*a*(n1*sqrt(2*delta))/lambda
+v=2*%pi*a*(n1*sqrt(2*delta/100))/lambda;//Unitless
+disp(v,"Normalized Frequency for single mode transmission : ");
+//Part (b) :
+//Formula : N=(alfa/alfa+2)*(v^2/2)
+N=(alfa/(alfa+2))*(v^2/2);//No. of guided modes
+disp(N,"No. of guided modes propagating in the fibre : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.16/Exa2_16.sce b/1739/CH2/EX2.16/Exa2_16.sce new file mode 100755 index 000000000..9e64f5799 --- /dev/null +++ b/1739/CH2/EX2.16/Exa2_16.sce @@ -0,0 +1,12 @@ +//Exa 2.16
+clc;
+clear;
+close;
+//Given data :
+d=60;//in um
+a=d/2;//in um
+NA=0.25;//Unitless
+lambda=1.1;//in um
+v=2*%pi*a*NA/lambda;//unitless
+N=v^2/4;//No. of modes
+disp(N,"Number of supported guided modes :");
\ No newline at end of file diff --git a/1739/CH2/EX2.17/Exa2_17.sce b/1739/CH2/EX2.17/Exa2_17.sce new file mode 100755 index 000000000..0b618d3f1 --- /dev/null +++ b/1739/CH2/EX2.17/Exa2_17.sce @@ -0,0 +1,21 @@ +//Exa 2.17
+clc;
+clear;
+close;
+//Given data :
+format('v',8)
+d=10;//in um
+a=d/2;//in um
+lambda_c=1.3;//in um
+n1=1.55;//unitless
+//Part (a)
+//for single mode transmission cut-off wavelength is lambda_c=2*%pi*a*n1*sqrt(2*delta)/2.405
+delta=(lambda_c*2.405/(2*%pi*a*n1))^2/2;//unitless
+disp(delta,"Normalized refractive index difference in % : ");
+//Part (b)
+//Formula : n2/n1=delta
+n2=n1*(1-delta);
+disp(n2,"Refractive index of cladding glass : ");
+//Part (c) :
+fi_o=asind(n1*sqrt(2*delta));//in degree
+disp(fi_o,"Acceptance angle in degree : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.18/Exa2_18.sce b/1739/CH2/EX2.18/Exa2_18.sce new file mode 100755 index 000000000..0fa9a26c6 --- /dev/null +++ b/1739/CH2/EX2.18/Exa2_18.sce @@ -0,0 +1,20 @@ +//Exa 2.18
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+d=7;//in um
+a=d/2;//in um
+n1=1.49;//unitless
+delta=1;//relative refractive index difference in %
+//Part (a)
+//Formula : lambda_c=2*%pi*a*n1*sqrt(2*delta)/2.405;
+lambda_c=2*%pi*a*n1*sqrt(2*delta/100)/2.405;//in um
+disp(lambda_c,"Shortest wavelength of the light in micre meter :");
+//Part (b)
+//Formula : delta=(1/2)*{2.405*lambda_c/(2*%pi*a*n1)}^2
+d=10;//in um
+a=d/2;//in um
+delta=(1/2)*{2.405*lambda_c/(2*%pi*a*n1)}^2;//unitless
+disp(delta*100,"Maximum possible relative refractive index difference in % :");
\ No newline at end of file diff --git a/1739/CH2/EX2.19/Exa2_19.sce b/1739/CH2/EX2.19/Exa2_19.sce new file mode 100755 index 000000000..4948a00ea --- /dev/null +++ b/1739/CH2/EX2.19/Exa2_19.sce @@ -0,0 +1,12 @@ +//Exa 2.19
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+n1=1.49;//unitless
+n2=1.48;//unitless
+lambda_c=1.5;//in um
+//Formula : a=2.405*lambda_c/(2*%pi*sqrt(n1^2-n2^2))
+a=2.405*lambda_c/(2*%pi*sqrt(n1^2-n2^2));//in um
+disp(2*a,"Fibre core diameter in micro meter : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.2/Exa2_2.sce b/1739/CH2/EX2.2/Exa2_2.sce new file mode 100755 index 000000000..36f8e957d --- /dev/null +++ b/1739/CH2/EX2.2/Exa2_2.sce @@ -0,0 +1,11 @@ +//Exa 2.2
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+n1=1.50;//refractive index
+n2=1.47;//refractive index
+//Formula : sin(theta_C)=n2/n1;
+theta_c=asind((n2/n1));//in degree
+disp(theta_c,"Critical Angle at core cladding interface in Degree : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.20/Exa2_20.sce b/1739/CH2/EX2.20/Exa2_20.sce new file mode 100755 index 000000000..b3f8271b9 --- /dev/null +++ b/1739/CH2/EX2.20/Exa2_20.sce @@ -0,0 +1,21 @@ +//Exa 2.20
+clc;
+clear;
+close;
+//Given data :
+N=742;//No. of guided modes(unitless)
+n1=1.5;//unitlessnm
+alfa=2;//characteristic index profile
+NA=0.3;//unitless
+d=70;//in um
+a=d/2;//in um
+alfa=2;//Graded index profile for parabolic
+//Formula : N=(alfa/(alfa+2))/(v^2/2)
+v=sqrt(N*((alfa+2)/alfa)*2);//Unitless
+//Formula : v=2*%pi*a*NA/lambda
+lambda=2*%pi*a*NA/v;//in um
+disp(lambda,"Wavelength of light propagating in fibre in micro meter :");
+//Formula : lambvda_c=lambda=2*%pi*a*NA/(2.405*(sqrt((alfa+2)/alfa)))
+a=lambda*(2.405*(sqrt((alfa+2)/alfa)))/(2*%pi*NA);//in um
+disp(2*a,"Diameter of fibre in micro meter : ");
+//Note : Answer in the book is not accurate.
\ No newline at end of file diff --git a/1739/CH2/EX2.21/Exa2_21.sce b/1739/CH2/EX2.21/Exa2_21.sce new file mode 100755 index 000000000..06dbed3c3 --- /dev/null +++ b/1739/CH2/EX2.21/Exa2_21.sce @@ -0,0 +1,15 @@ +//Exa 2.21
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+n1=1.447;//unitless
+n2=1.442;//unitless
+lambda=1.3;//in um
+d=7.2;//in um
+a=d/2;//in um
+//Formula : v=2*%pi*a*sqrt(n1^2-n2^2)/lambda
+v=2*%pi*a*sqrt(n1^2-n2^2)/lambda;//unitless
+disp(v,"Value of v : ");
+disp("To achieve single mode transmission in an idealised step index fibre, Value of v must be less than 2.405. Hence, the fibre given will permit single mode transmission.")
\ No newline at end of file diff --git a/1739/CH2/EX2.23/Exa2_23.sce b/1739/CH2/EX2.23/Exa2_23.sce new file mode 100755 index 000000000..5376f53e4 --- /dev/null +++ b/1739/CH2/EX2.23/Exa2_23.sce @@ -0,0 +1,12 @@ +//Exa 2.23
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+alfa=1.9;
+//characteristic index profile
+//Formula : v=2.405*sqrt[(alfa+2)/alfa]
+v=2.405*sqrt((alfa+2)/alfa);//unitless
+disp(v,"Value of v : ");
+//Note : Answer in the book is not accurate.
\ No newline at end of file diff --git a/1739/CH2/EX2.24/Exa2_24.sce b/1739/CH2/EX2.24/Exa2_24.sce new file mode 100755 index 000000000..ae8d4e8ee --- /dev/null +++ b/1739/CH2/EX2.24/Exa2_24.sce @@ -0,0 +1,14 @@ +//Exa 2.24
+clc;
+clear;
+close;
+//Given data :
+delta=1;//relative refractive index difference in %
+n1=1.47;//unitless
+lambda=1.5;//in um
+disp("v=2*%pi*a*n1*sqrt(2*delta)/lambda");
+disp("For single mode transmission in graded index fibre, v=2.405*sqrt((alfa+2)/alfa)");
+disp("Hence we have :");
+alfa=2;//unitless
+a=2.405*sqrt((alfa+2)/alfa)*lambda/(2*%pi*n1*sqrt(2*delta/100));
+disp(2*a,"Hence the diameter in micro meter : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.25/Exa2_25.sce b/1739/CH2/EX2.25/Exa2_25.sce new file mode 100755 index 000000000..d508b7175 --- /dev/null +++ b/1739/CH2/EX2.25/Exa2_25.sce @@ -0,0 +1,12 @@ +//Exa 2.24
+clc;
+clear;
+close;
+//Given data :
+delta=1;//relative refractive index difference in %
+n1=1.47;//unitless
+lambda=1.5;//in um
+alfa=2;//unitless
+//Formula : v=2*%pi*a*n1*sqrt(2*delta)/lambda
+a=2.405*lambda/(2*%pi*n1*sqrt(2*delta/100));
+disp(2*a,"Hence the diameter in micro meter : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.3/Exa2_3.sce b/1739/CH2/EX2.3/Exa2_3.sce new file mode 100755 index 000000000..f1469b4ab --- /dev/null +++ b/1739/CH2/EX2.3/Exa2_3.sce @@ -0,0 +1,11 @@ +//Exa 2.3
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+delta=1;//relative refractive index difference in %
+n1=1.50;//refractive index
+//Formula : NA=n1*sqrt(2*delta);
+NA=n1*sqrt(2*delta/100);
+disp(NA,"Numerical Aperture of the fibre : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.4/Exa2_4.sce b/1739/CH2/EX2.4/Exa2_4.sce new file mode 100755 index 000000000..9ad371168 --- /dev/null +++ b/1739/CH2/EX2.4/Exa2_4.sce @@ -0,0 +1,15 @@ +//Exa 2.4
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+delta=1;//relative refractive index difference in %
+n1=1.55;//refractive index
+n2=1.51;//refractive index
+//Formula : NA=sqrt(n1^2-n2^2);
+NA=sqrt(n1^2-n2^2)
+disp(NA,"Numerical Aperture of the fibre : ");
+//Formula : NA=sin(fi_o).....(max)
+fi_o_max=asind(NA);//in Degree
+disp(fi_o_max,"Acceptance angle in degree : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.5/Exa2_5.sce b/1739/CH2/EX2.5/Exa2_5.sce new file mode 100755 index 000000000..c523fab69 --- /dev/null +++ b/1739/CH2/EX2.5/Exa2_5.sce @@ -0,0 +1,19 @@ +//Exa 2.5
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+NA=0.40;//Unitless
+n1=1.50;//refractive index
+delta=1;//relative refractive index difference in %
+//Part (a) :
+//Formula : NA=sin(fi_o).....(max)
+fi_o_max=asind(NA);//in Degree
+disp(fi_o_max,"Acceptance angle in degree : ");
+//Part (b) :
+//Formula : n2/n1=1-delta
+n2=n1*(1-delta/100);//refractive index(unitless)
+//Formula : sin(theta_C)=n2/n1;
+theta_c=asind((n2/n1));//in degree
+disp(theta_c,"Critical Angle at core cladding interface in Degree : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.6/Exa2_6.sce b/1739/CH2/EX2.6/Exa2_6.sce new file mode 100755 index 000000000..24dc4736c --- /dev/null +++ b/1739/CH2/EX2.6/Exa2_6.sce @@ -0,0 +1,18 @@ +//Exa 2.6
+clc;
+clear;
+close;
+//Given data :
+v=2*10^8;//in m/s
+fi_c=60;//in degree
+//Part (a)
+//Formula : v=c/n;
+c=3*10^8;//in m/s
+n1=c/v;//unitless
+disp(n1,"Refractive index of core : ");
+//Formula : sin(fi_c)=n2/n1;
+n2=n1*sin(fi_c*%pi/180);//unitless
+disp(n2,"Refractive index of cladding :");
+//Part (b)
+NA=sqrt(n1^2-n2^2);//Unitless
+disp(NA,"Numerical Aperture : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.7/Exa2_7.sce b/1739/CH2/EX2.7/Exa2_7.sce new file mode 100755 index 000000000..a97649586 --- /dev/null +++ b/1739/CH2/EX2.7/Exa2_7.sce @@ -0,0 +1,11 @@ +//Exa 2.7
+clc;
+clear;
+close;
+//Given data :
+d=30;//in um
+a=d/2;//in um
+lambda=0.80;//in um
+NA=0.74;//Unitless
+V=2*%pi*a*NA/lambda;//V number
+disp(V,"V number is : ");
\ No newline at end of file diff --git a/1739/CH2/EX2.8/Exa2_8.sce b/1739/CH2/EX2.8/Exa2_8.sce new file mode 100755 index 000000000..d39fedf02 --- /dev/null +++ b/1739/CH2/EX2.8/Exa2_8.sce @@ -0,0 +1,20 @@ +//Exa 2.8
+clc;
+clear;
+close;
+//Given data :
+d=60;//in um
+a=d/2;//in um
+delta=1;//relative refractive index difference in %
+lambda=0.80;//in um
+n1=1.5;//Unitless
+//Part (a)
+//Formula : v=2*%pi*a*n1*NA/lambda;
+//NA=sqrt(2*delta)
+v=2*%pi*a*n1*sqrt(2*delta/100)/lambda;//Normalized frequency
+disp(v,"Normalized frequency for the fiber : ");
+//Part (b)
+disp("Only the modes with cut-off v numbers below this value will propagate.");
+N=v^2/2;//No. of modes supported
+disp(round(N),"Number of modes supported : ");
+//Note : Answer in the book is wrong.
\ No newline at end of file diff --git a/1739/CH2/EX2.9/Exa2_9.sce b/1739/CH2/EX2.9/Exa2_9.sce new file mode 100755 index 000000000..34e1d5b08 --- /dev/null +++ b/1739/CH2/EX2.9/Exa2_9.sce @@ -0,0 +1,13 @@ +//Exa 2.9
+clc;
+clear;
+close;
+//Given data :
+NA=0.16;//Unitless
+d=30;//in um
+a=d/2;//in um
+n1=1.50;//Unitless
+lambda=0.9;//in um
+v=2*%pi*a*NA/lambda;//V number
+N=v^2/2;//No. of modes propagate
+disp(ceil(N),"Number of guided modes in the fibre : ");
\ No newline at end of file |