summaryrefslogtreecommitdiff
path: root/1736/CH2
diff options
context:
space:
mode:
Diffstat (limited to '1736/CH2')
-rwxr-xr-x1736/CH2/EX2.1/Ch02Ex1.sce12
-rwxr-xr-x1736/CH2/EX2.2/Ch02Ex2.sce14
-rwxr-xr-x1736/CH2/EX2.3/Ch02Ex3.sce14
-rwxr-xr-x1736/CH2/EX2.4/Ch02Ex4.sce14
-rwxr-xr-x1736/CH2/EX2.5/Ch02Ex5.sce14
-rwxr-xr-x1736/CH2/EX2.6/Ch02Ex6.sce13
-rwxr-xr-x1736/CH2/EX2.7/Ch02Ex7.sce8
-rwxr-xr-x1736/CH2/EX2.8/Ch02Ex8.sce20
8 files changed, 109 insertions, 0 deletions
diff --git a/1736/CH2/EX2.1/Ch02Ex1.sce b/1736/CH2/EX2.1/Ch02Ex1.sce
new file mode 100755
index 000000000..b67b2444d
--- /dev/null
+++ b/1736/CH2/EX2.1/Ch02Ex1.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.1 : Page-62 (2006)
+clc; clear;
+epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m
+e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
+r = 3.147e-010; // Nearest neighbour distance for KCl, m
+n = 9.1; // Repulsive exponent of KCl
+A = 1.748; // Madelung constant for lattice binding energy
+E = A*e^2/(4*%pi*epsilon_0*r)*(n-1)/n/e; // Binding energy of KCl, eV
+printf("\nThe binding energy of KCl = %5.3f eV", E);
+
+// Result
+// The binding energy of KCl = 7.110 eV
diff --git a/1736/CH2/EX2.2/Ch02Ex2.sce b/1736/CH2/EX2.2/Ch02Ex2.sce
new file mode 100755
index 000000000..72f7ccd63
--- /dev/null
+++ b/1736/CH2/EX2.2/Ch02Ex2.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.2 : Page-62 (2006)
+clc; clear;
+epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m
+N = 6.023e+023; // Avogadro's number
+e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
+a0 = 5.63e-010; // Lattice parameter of NaCl, m
+r0 = a0/2; // Nearest neighbour distance for NaCl, m
+n = 8.4; // Repulsive exponent of NaCl
+A = 1.748; // Madelung constant for lattice binding energy
+E = A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n/e; // Binding energy of NaCl, eV
+printf("\nThe binding energy of NaCl = %5.3f kcal/mol", E*N*e/(4.186*1e+03));
+
+// Result
+// The binding energy of NaCl = 181.101 eV
diff --git a/1736/CH2/EX2.3/Ch02Ex3.sce b/1736/CH2/EX2.3/Ch02Ex3.sce
new file mode 100755
index 000000000..a4490246a
--- /dev/null
+++ b/1736/CH2/EX2.3/Ch02Ex3.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.3 : Page-62 (2006)
+clc; clear;
+epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m
+N = 6.023e+023; // Avogadro's number
+e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
+E = 162.9e+03; // Binding energy of KCl, cal/mol
+n = 8.6; // Repulsive exponent of KCl
+A = 1.747; // Madelung constant for lattice binding energy
+// As lattice binding energy, E = A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0
+r0 = A*N*e^2/(4*%pi*epsilon_0*E*4.186)*(n-1)/n; // Nearest neighbour distance of KCl, m
+printf("\nThe nearest neighbour distance of KCl = %4.2f angstorm", r0/1e-010);
+
+// Result
+// The nearest neighbour distance of KCl = 3.14 angstorm
diff --git a/1736/CH2/EX2.4/Ch02Ex4.sce b/1736/CH2/EX2.4/Ch02Ex4.sce
new file mode 100755
index 000000000..850c34fff
--- /dev/null
+++ b/1736/CH2/EX2.4/Ch02Ex4.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.4 : Page-63 (2006)
+clc; clear;
+epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m
+N = 6.023e+023; // Avogadro's number
+e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
+E = 152e+03; // Binding energy of CsCl, cal/mol
+n = 10.6; // Repulsive exponent of CsCl
+A = 1.763; // Madelung constant for lattice binding energy
+// As lattice binding energy, E = A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0
+r0 = A*N*e^2/(4*%pi*epsilon_0*E*4.186)*(n-1)/n; // Nearest neighbour distance of CsCl, m
+printf("\nThe nearest neighbour distance of CsCl = %4.2f angstrom", r0/1e-010);
+
+// Result
+// The nearest neighbour distance of CsCl = 3.48 angstrom
diff --git a/1736/CH2/EX2.5/Ch02Ex5.sce b/1736/CH2/EX2.5/Ch02Ex5.sce
new file mode 100755
index 000000000..873fcc722
--- /dev/null
+++ b/1736/CH2/EX2.5/Ch02Ex5.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.5 : Page-63 (2006)
+clc; clear;
+epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m
+N = 6.023e+023; // Avogadro's number
+e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
+r0 = 6.46e-010; // Nearest neighbour distance of NaI
+E = 157.1e+03; // Binding energy of NaI, cal/mol
+A = 1.747; // Madelung constant for lattice binding energy
+// As lattice binding energy, E = -A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for n
+n = 1/(1+(4.186*E*4*%pi*epsilon_0*r0)/(N*A*e^2)); // Repulsive exponent of NaI
+printf("\nThe repulsive exponent of NaI = %5.3f", n);
+
+// Result
+// The repulsive exponent of NaI = 0.363
diff --git a/1736/CH2/EX2.6/Ch02Ex6.sce b/1736/CH2/EX2.6/Ch02Ex6.sce
new file mode 100755
index 000000000..fb365a0f8
--- /dev/null
+++ b/1736/CH2/EX2.6/Ch02Ex6.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.6 : Page-63 (2006)
+clc; clear;
+e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
+a0 = 2.815e-010; // Nearest neighbour distance of solid
+A = 1.747; // Madelung constant for lattice binding energy
+n = 8.6; // The repulsive exponent of solid
+c = 2; // Structural factor for rocksalt
+// As n = 1 + (9*c*a0^4)/(K0*e^2*A), solving for K0
+K0 = 9*c*a0^4/((n-1)*e^2*A); // Compressibility of solid, metre square per newton
+printf("\nThe compressibility of the solid = %5.3e metre square per newton", K0);
+
+// Result
+// The compressibility of the solid = 3.325e-001 metre square per newton (Answer Given in the textbook is wrong)
diff --git a/1736/CH2/EX2.7/Ch02Ex7.sce b/1736/CH2/EX2.7/Ch02Ex7.sce
new file mode 100755
index 000000000..af0dee29d
--- /dev/null
+++ b/1736/CH2/EX2.7/Ch02Ex7.sce
@@ -0,0 +1,8 @@
+// Scilab Code Ex2.7 : Page-69 (2006)
+clc; clear;
+chi_diff = 1; // Electronegativity difference between the constituent of elements of solid
+percent_ion = 100*(1-exp(-(0.25*chi_diff^2))); // Percentage ionic character present in solid given by Pauling
+printf("\nThe percentage ionic character present in solid = %2d percent ", percent_ion);
+
+// Result
+// The percentage ionic character present in solid = 22 percent
diff --git a/1736/CH2/EX2.8/Ch02Ex8.sce b/1736/CH2/EX2.8/Ch02Ex8.sce
new file mode 100755
index 000000000..980142adc
--- /dev/null
+++ b/1736/CH2/EX2.8/Ch02Ex8.sce
@@ -0,0 +1,20 @@
+// Scilab Code Ex2.8 : Page-69 (2006)
+clc; clear;
+A = cell(2,3); // Declare a cell of 3X2
+A(1,1).entries = 'GaAs'; // First compound name
+A(1,2).entries = 4.3; // Homopolar gap of first compound, eV
+A(1,3).entries = 2.90; // Ionic gap of first compound, eV
+A(2,1).entries = 'CdTe'; // Second compound name
+A(2,2).entries = 3.08; // Homopolar gap of second compound, eV
+A(2,3).entries = 4.90; // Ionic gap of second compound, eV
+printf("\nThe fractional ionicity of the compounds are given in the last column of the following table:");
+printf("\nCompound Eh C fi");
+for i = 1:1:2
+printf("\n%s %3.1f %4.2f %5.3f", A(i,1).entries, A(i,2).entries, A(i,3).entries, A(i,3).entries^2/(A(i,2).entries^2+A(i,3).entries^2)); // Philips and Vanvechten model of fractional ionicity
+end
+
+// Result
+// The fractional ionicity of the compounds are given in the last column of the following table:
+// Compound Eh C fi
+// GaAs 4.3 2.90 0.313
+// sCdTe 3.1 4.90 0.717