summaryrefslogtreecommitdiff
path: root/1697
diff options
context:
space:
mode:
Diffstat (limited to '1697')
-rwxr-xr-x1697/CH1/EX1.1/Exa1_1.sce10
-rwxr-xr-x1697/CH1/EX1.10/Exa1_10.sce17
-rwxr-xr-x1697/CH1/EX1.11/Exa1_11.sce10
-rwxr-xr-x1697/CH1/EX1.12/Exa1_12.sce13
-rwxr-xr-x1697/CH1/EX1.13/Exa1_13.sce16
-rwxr-xr-x1697/CH1/EX1.14/Exa1_14.sce15
-rwxr-xr-x1697/CH1/EX1.15/Exa1_15.sce12
-rwxr-xr-x1697/CH1/EX1.16/Exa1_16.sce10
-rwxr-xr-x1697/CH1/EX1.17/Exa1_17.sce11
-rwxr-xr-x1697/CH1/EX1.18/Exa1_18.sce12
-rwxr-xr-x1697/CH1/EX1.19/Exa1_19.sce27
-rwxr-xr-x1697/CH1/EX1.2/Exa1_2.sce10
-rwxr-xr-x1697/CH1/EX1.20/Exa1_20.sce10
-rwxr-xr-x1697/CH1/EX1.3/Exa1_3.sce10
-rwxr-xr-x1697/CH1/EX1.4/Exa1_4.sce9
-rwxr-xr-x1697/CH1/EX1.5/Exa1_5.sce15
-rwxr-xr-x1697/CH1/EX1.6/Exa1_6.sce11
-rwxr-xr-x1697/CH1/EX1.7/Exa1_7.sce15
-rwxr-xr-x1697/CH1/EX1.8/Exa1_8.sce13
-rwxr-xr-x1697/CH1/EX1.9/Exa1_9.sce9
-rwxr-xr-x1697/CH10/EX10.1/Exa10_1.sce17
-rwxr-xr-x1697/CH10/EX10.10/Exa10_10.sce10
-rwxr-xr-x1697/CH10/EX10.11/Exa10_11.sce10
-rwxr-xr-x1697/CH10/EX10.2/Exa10_2.sce20
-rwxr-xr-x1697/CH10/EX10.3/Exa10_3.sce9
-rwxr-xr-x1697/CH10/EX10.4/Exa10_4.sce11
-rwxr-xr-x1697/CH10/EX10.5/Exa10_5.sce26
-rwxr-xr-x1697/CH10/EX10.6/Exa10_6.sce11
-rwxr-xr-x1697/CH10/EX10.7/Exa10_7.sce12
-rwxr-xr-x1697/CH10/EX10.8/Exa10_8.sce12
-rwxr-xr-x1697/CH10/EX10.9/Exa10_9.sce10
-rwxr-xr-x1697/CH3/EX3.1/Exa3_1.sce10
-rwxr-xr-x1697/CH3/EX3.10/Exa3_10.sce10
-rwxr-xr-x1697/CH3/EX3.11/Exa3_11.sce10
-rwxr-xr-x1697/CH3/EX3.12/Exa3_12.sce21
-rwxr-xr-x1697/CH3/EX3.13/Exa3_13.sce9
-rwxr-xr-x1697/CH3/EX3.14/Exa3_14.sce8
-rwxr-xr-x1697/CH3/EX3.15/Exa3_15.sce10
-rwxr-xr-x1697/CH3/EX3.16/Exa3_16.sce10
-rwxr-xr-x1697/CH3/EX3.19/Exa3_19.sce21
-rwxr-xr-x1697/CH3/EX3.2/Exa3_2.sce11
-rwxr-xr-x1697/CH3/EX3.20/Exa3_20.sce11
-rwxr-xr-x1697/CH3/EX3.3/Exa3_3.sce20
-rwxr-xr-x1697/CH3/EX3.4/Exa3_4.sce23
-rwxr-xr-x1697/CH3/EX3.5/Exa3_5.sce14
-rwxr-xr-x1697/CH3/EX3.6/Exa3_6.sce32
-rwxr-xr-x1697/CH3/EX3.7/Exa3_7.sce19
-rwxr-xr-x1697/CH3/EX3.8/Exa3_8.sce11
-rwxr-xr-x1697/CH3/EX3.9/Exa3_9.sce9
-rwxr-xr-x1697/CH4/EX4.13/Exa4_13.sce16
-rwxr-xr-x1697/CH4/EX4.14/Exa4_14.sce12
-rwxr-xr-x1697/CH4/EX4.15/Exa4_15.sce24
-rwxr-xr-x1697/CH4/EX4.17/Exa4_17.sce22
-rwxr-xr-x1697/CH4/EX4.18/Exa4_18.sce32
-rwxr-xr-x1697/CH4/EX4.3/Exa4_3.sce36
-rwxr-xr-x1697/CH4/EX4.4/Exa4_4.sce19
-rwxr-xr-x1697/CH4/EX4.5/Exa4_5.sce20
-rwxr-xr-x1697/CH4/EX4.6/Exa4_6.sce18
-rwxr-xr-x1697/CH4/EX4.7/Exa4_7.sce12
-rwxr-xr-x1697/CH5/EX5.1/Exa5_1.sce16
-rwxr-xr-x1697/CH5/EX5.2/Exa5_2.sce16
-rwxr-xr-x1697/CH5/EX5.3/Exa5_3.sce16
-rwxr-xr-x1697/CH5/EX5.4/Exa5_4.sce21
-rwxr-xr-x1697/CH5/EX5.5/Exa5_5.sce18
-rwxr-xr-x1697/CH5/EX5.6/Exa5_6.sce19
-rwxr-xr-x1697/CH6/EX6.1/Exa6_1.sce20
-rwxr-xr-x1697/CH6/EX6.10/Exa6_10.sce32
-rwxr-xr-x1697/CH6/EX6.11/Exa6_11.sce24
-rwxr-xr-x1697/CH6/EX6.2/Exa6_2.sce19
-rwxr-xr-x1697/CH6/EX6.3/Exa6_3.sce16
-rwxr-xr-x1697/CH6/EX6.4/Exa6_4.sce13
-rwxr-xr-x1697/CH6/EX6.5/Exa6_5.sce20
-rwxr-xr-x1697/CH6/EX6.6/Exa6_6.sce20
-rwxr-xr-x1697/CH6/EX6.7/Exa6_7.sce14
-rwxr-xr-x1697/CH6/EX6.8/Exa6_8.sce13
-rwxr-xr-x1697/CH6/EX6.9/Exa6_9.sce24
-rwxr-xr-x1697/CH7/EX7.1/Exa7_1.sce13
-rwxr-xr-x1697/CH7/EX7.2/Exa7_2.sce12
-rwxr-xr-x1697/CH7/EX7.3/Exa7_3.sce10
-rwxr-xr-x1697/CH7/EX7.4/Exa7_4.sce13
-rwxr-xr-x1697/CH7/EX7.5/Exa7_5.sce12
-rwxr-xr-x1697/CH7/EX7.6/Exa7_6.sce17
-rwxr-xr-x1697/CH9/EX5.5/Exa9_5.sce9
-rwxr-xr-x1697/CH9/EX9.1/Exa9_1.sce24
-rwxr-xr-x1697/CH9/EX9.2/Exa9_2.sce10
-rwxr-xr-x1697/CH9/EX9.3/Exa9_3.sce15
-rwxr-xr-x1697/CH9/EX9.4/Exa9_4.sce10
-rwxr-xr-x1697/CH9/EX9.6/Exa9_6.sce9
-rwxr-xr-x1697/CH9/EX9.7/Exa9_7.sce16
-rwxr-xr-x1697/CH9/EX9.8/Exa9_8.sce9
-rwxr-xr-x1697/CH9/EX9.9/Exa9_9.sce16
91 files changed, 1389 insertions, 0 deletions
diff --git a/1697/CH1/EX1.1/Exa1_1.sce b/1697/CH1/EX1.1/Exa1_1.sce
new file mode 100755
index 000000000..c34b53874
--- /dev/null
+++ b/1697/CH1/EX1.1/Exa1_1.sce
@@ -0,0 +1,10 @@
+//Exa 1.1
+clc;
+clear;
+close;
+//given data :
+E=4;//in V/m
+Eta=120*%pi;//constant
+//Formula : E/H=Eta
+H=E/Eta;//in A/m
+disp(H,"Strength of magnetic field in free space in A/m : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.10/Exa1_10.sce b/1697/CH1/EX1.10/Exa1_10.sce
new file mode 100755
index 000000000..5ce022faa
--- /dev/null
+++ b/1697/CH1/EX1.10/Exa1_10.sce
@@ -0,0 +1,17 @@
+//Exa 1.10
+clc;
+clear;
+close;
+//given data :
+le=200;//in m
+Irms=200;//in A
+f=300;//in KHz
+r=10;//in Km
+c=3*10^8;//speed of light i m/s
+lambda=c/(f*1000);//in m
+Erms=120*%pi*le*Irms/(lambda*r*10^3);//in V/m
+disp(Erms,"Field strength at 10Km distace in V/m: ");
+Rr=(160*(%pi)^2)*(le/lambda)^2;//in Ohm
+W=Irms^2*Rr;//in Watts
+disp(W/10^6,"Radiated Power in MWatts : ");
+//Note : Answer is wrong in the book. Unit of answer in the book is written mW instead of MW by mistake. \ No newline at end of file
diff --git a/1697/CH1/EX1.11/Exa1_11.sce b/1697/CH1/EX1.11/Exa1_11.sce
new file mode 100755
index 000000000..e41807cf0
--- /dev/null
+++ b/1697/CH1/EX1.11/Exa1_11.sce
@@ -0,0 +1,10 @@
+//Exa 1.11
+clc;
+clear;
+close;
+//given data :
+//Formula : Rr=80*%pi^2*(l/lambda)^2
+//Given l=lambda/60
+//l/lambda=1/60
+Rr=80*%pi^2*(1/60)^2;//in Ohm
+disp(Rr,"Radiation resistance in Ohm: "); \ No newline at end of file
diff --git a/1697/CH1/EX1.12/Exa1_12.sce b/1697/CH1/EX1.12/Exa1_12.sce
new file mode 100755
index 000000000..16d780f42
--- /dev/null
+++ b/1697/CH1/EX1.12/Exa1_12.sce
@@ -0,0 +1,13 @@
+//Exa 1.12
+clc;
+clear;
+close;
+//given data :
+r=10;//in Km
+Erms=10;//in mV/m
+r1=20;//in Km
+//Formula : Erms=sqrt(90*W)/r;//in V/m
+//Let swrt(90*W)=a
+a=Erms*r;
+Erms1=a/r1;//in mV/m
+disp(Erms1,"Field strength at 20Km distace in mV/m: "); \ No newline at end of file
diff --git a/1697/CH1/EX1.13/Exa1_13.sce b/1697/CH1/EX1.13/Exa1_13.sce
new file mode 100755
index 000000000..66ae1b7f5
--- /dev/null
+++ b/1697/CH1/EX1.13/Exa1_13.sce
@@ -0,0 +1,16 @@
+//Exa 1.13
+clc;
+clear;
+close;
+//given data :
+r=1;//in Km
+r=1*10^3;//in m
+l=1;//in m
+Irms=10;//in A
+f=5;//in MHz
+c=3*10^8;//speed of light i m/s
+lambda=c/(f*10^6);//in m
+le=2*l/%pi;//in m
+Erms=120*%pi*le*Irms/(lambda*r);//in V/m
+disp(Erms,"Field strength at 10Km distace in V/m: ");
+//Note : Answer in the book is wrong. Mistake during value putting. \ No newline at end of file
diff --git a/1697/CH1/EX1.14/Exa1_14.sce b/1697/CH1/EX1.14/Exa1_14.sce
new file mode 100755
index 000000000..12510c1b7
--- /dev/null
+++ b/1697/CH1/EX1.14/Exa1_14.sce
@@ -0,0 +1,15 @@
+//Exa 1.14
+clc;
+clear;
+close;
+//given data :
+Irms=30;//in A
+f=1;//in MHz
+Erms=10;//in mV/m
+Erms=Erms*10^-3;//in V/m
+r=50;//in Km
+r=r*10^3;//in m
+c=3*10^8;//speed of light i m/s
+lambda=c/(f*10^6);//in m
+le=Erms*lambda*r/(120*%pi*Irms);//in m
+disp(le,"Effetive height of Antenna in meter : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.15/Exa1_15.sce b/1697/CH1/EX1.15/Exa1_15.sce
new file mode 100755
index 000000000..c3616ecef
--- /dev/null
+++ b/1697/CH1/EX1.15/Exa1_15.sce
@@ -0,0 +1,12 @@
+//Exa 1.15
+clc;
+clear;
+close;
+//given data :
+disp("Erms^2 = 30*Wt/r^2");
+disp("Wt = Erms^2*r^2/30");
+disp("Given : E = 10*I/r");
+disp("Wt = (10*I/r)^2*r^2/30")
+disp("Wt = 100*I^2/30")
+disp("Rr = Wt/I^2 = 100/30");
+disp(100/30,"Radiation resistance in Ohm : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.16/Exa1_16.sce b/1697/CH1/EX1.16/Exa1_16.sce
new file mode 100755
index 000000000..631bed969
--- /dev/null
+++ b/1697/CH1/EX1.16/Exa1_16.sce
@@ -0,0 +1,10 @@
+//Exa 1.16
+clc;
+clear;
+close;
+//given data :
+format('v',8);
+lambda=300/(50*10^-6);//in m
+r=round(lambda)/(2*%pi);//in m
+disp(r,"Distance in meter : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH1/EX1.17/Exa1_17.sce b/1697/CH1/EX1.17/Exa1_17.sce
new file mode 100755
index 000000000..7e98a6a92
--- /dev/null
+++ b/1697/CH1/EX1.17/Exa1_17.sce
@@ -0,0 +1,11 @@
+//Exa 1.17
+clc;
+clear;
+close;
+//given data :
+r=2;//in Km
+r=r*10^3;//in m
+Wt=1;//in KW
+Wt=Wt*10^3;//in Watt
+Erms=sqrt(30*Wt)/r;//in V/m
+disp(Erms*10^3,"Field strength at 2Km distace in mV/m: "); \ No newline at end of file
diff --git a/1697/CH1/EX1.18/Exa1_18.sce b/1697/CH1/EX1.18/Exa1_18.sce
new file mode 100755
index 000000000..47e5f18e1
--- /dev/null
+++ b/1697/CH1/EX1.18/Exa1_18.sce
@@ -0,0 +1,12 @@
+//Exa 1.18
+clc;
+clear;
+close;
+//given data :
+f=20;//in MHz
+f=f*10^6;//in Hz
+le=100;//in m
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in m
+Rr=160*(%pi*le/lambda)^2;//in ohm
+disp(Rr/1000,"Radiation Resistance in KOhm : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.19/Exa1_19.sce b/1697/CH1/EX1.19/Exa1_19.sce
new file mode 100755
index 000000000..fdef53ec0
--- /dev/null
+++ b/1697/CH1/EX1.19/Exa1_19.sce
@@ -0,0 +1,27 @@
+//Exa 1.19
+clc;
+clear;
+close;
+//given data :
+P=10;//in W/m^2
+f=40;//in MHz
+f=f*10^6;//in Hz
+mu_r=4;//constant
+epsilon_r=5;//constant
+//Velocity of propagation
+//formula : v=(1/sqrt(mu_o*epsilon_o))*(1/sqrt(mu_r*epsilon_r));//in m/s
+//1/sqrt(mu_o*epsilon_o)=c=speed of light=3*10^8 m/s
+c=3*10^8;//speed of light in m/s
+v=c*(1/sqrt(mu_r*epsilon_r));//in m/s
+disp(v,"Velocity of propagation in m/s : ");
+//Wavelength
+lambda=v/f;//in meter
+disp(lambda,"Wavelength in Meter : ");
+//rms electric field
+//Formula : E=P*sqrt(mu_o/epsilon_o)*sqrt(mu_r/epsilon_r);//in V/m
+E=sqrt(1200*%pi*sqrt(4/5));//in V/m
+Erms=sqrt(E^2/sqrt(2));//in V/m
+disp(Erms,"rms Electric Field in V/m: ");
+//Impedence of medium
+Eta=(sqrt(2)*Erms)^2/P;//in Ohm
+disp(Eta,"Impedence of medium in ohm : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.2/Exa1_2.sce b/1697/CH1/EX1.2/Exa1_2.sce
new file mode 100755
index 000000000..e91d77b30
--- /dev/null
+++ b/1697/CH1/EX1.2/Exa1_2.sce
@@ -0,0 +1,10 @@
+//Exa 1.2
+clc;
+clear;
+close;
+//given data :
+H=5.2;//in mA/m
+Eta=120*%pi;//constant
+//Formula : E/H=Eta
+E=H*10^-3*Eta;//in V/m
+disp(round(E),"Strength of Electric field in free space in V/m : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.20/Exa1_20.sce b/1697/CH1/EX1.20/Exa1_20.sce
new file mode 100755
index 000000000..5e53522a2
--- /dev/null
+++ b/1697/CH1/EX1.20/Exa1_20.sce
@@ -0,0 +1,10 @@
+//Exa 1.20
+clc;
+clear;
+close;
+//given data :
+disp("Hfi = (Im*dlsin(theta)/(4*%pi))*[cos(omega*t1)/r-omega*sin(omega*t1)/(c*r)]");
+disp("200(Im*dlsin(theta)/(4*%pi))*(sin(omega*t1)/r^2)=(Im*dlsin(theta)/(4*%pi))*(-omega*sin(omega*t1)/(c*r))");
+disp("200*cos(omega*t1)/r^2 = -omega*sin(omega*t1)/(c*r)");
+disp("r=200*lambda/(2*%pi);//in Meter")
+disp("r = "+string(200/(2*%pi))+"lambda"); \ No newline at end of file
diff --git a/1697/CH1/EX1.3/Exa1_3.sce b/1697/CH1/EX1.3/Exa1_3.sce
new file mode 100755
index 000000000..80b9e748a
--- /dev/null
+++ b/1697/CH1/EX1.3/Exa1_3.sce
@@ -0,0 +1,10 @@
+//Exa 1.3
+clc;
+clear;
+close;
+//given data :
+I=20;//in A
+Rr=100;//in Ohm
+//Formula : Wr=I^2*R
+Wr=I^2*Rr;//in W
+disp(Wr/1000,"Radiated power in KW : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.4/Exa1_4.sce b/1697/CH1/EX1.4/Exa1_4.sce
new file mode 100755
index 000000000..d30a601be
--- /dev/null
+++ b/1697/CH1/EX1.4/Exa1_4.sce
@@ -0,0 +1,9 @@
+//Exa 1.4
+clc;
+clear;
+close;
+//given data :
+W=625;//in KW
+r=30;//in Km
+Erms=sqrt(90*W*1000)/(r*1000);//in V/m
+disp(Erms*1000,"Strength of Electric field at 30Km away in mV/m : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.5/Exa1_5.sce b/1697/CH1/EX1.5/Exa1_5.sce
new file mode 100755
index 000000000..886e64ad4
--- /dev/null
+++ b/1697/CH1/EX1.5/Exa1_5.sce
@@ -0,0 +1,15 @@
+//Exa 1.5
+clc;
+clear;
+close;
+//given data :
+le=10;//in m
+Irms=450;//in A
+f=50;//in KHz
+R=1.5;//in Ohm
+lambda=300/(f/1000);//in m
+Rr=160*(%pi)^2*(le/lambda)^2;//in Ohm
+Wr=Irms^2*Rr;//in W
+disp(Wr,"Radiated power in Watts : ");
+Eta=(Rr/(Rr+R))*100;//efficiency in %
+disp(Eta,"Efficiency of antenna in % : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.6/Exa1_6.sce b/1697/CH1/EX1.6/Exa1_6.sce
new file mode 100755
index 000000000..a32b473c2
--- /dev/null
+++ b/1697/CH1/EX1.6/Exa1_6.sce
@@ -0,0 +1,11 @@
+//Exa 1.6
+clc;
+clear;
+close;
+//given data :
+le=50;//in m
+f=100;//in MHz
+lambda=300/(f);//in m
+Rr=(160*(%pi)^2)*(le/lambda)^2;//in Ohm
+disp(Rr/10^6,"Radiation Resistance in Mohm: ");
+//Note : Answer in the book is wrong \ No newline at end of file
diff --git a/1697/CH1/EX1.7/Exa1_7.sce b/1697/CH1/EX1.7/Exa1_7.sce
new file mode 100755
index 000000000..bb5f3ccb9
--- /dev/null
+++ b/1697/CH1/EX1.7/Exa1_7.sce
@@ -0,0 +1,15 @@
+//Exa 1.7
+clc;
+clear;
+close;
+//given data :
+l=30;//in m
+Irms=20;//in A
+f=1;//in MHz
+r=10;//in Km
+r=r*1000;//in m
+le=2*l/%pi;//in m
+lambda=300/(f);//in m
+Erms=120*%pi*le*Irms/(lambda*r);//in V/m
+disp(Erms,"Field strength at 10Km distace in V/m: ");
+//Note : Answer in the book is wrong \ No newline at end of file
diff --git a/1697/CH1/EX1.8/Exa1_8.sce b/1697/CH1/EX1.8/Exa1_8.sce
new file mode 100755
index 000000000..b28ed4afd
--- /dev/null
+++ b/1697/CH1/EX1.8/Exa1_8.sce
@@ -0,0 +1,13 @@
+//Exa 1.8
+clc;
+clear;
+close;
+//given data :
+Rl=1;//in ohm
+//Formula : Rr=80*%pi^2*(l/lambda)^2
+//Given l=lambda/10
+//l/lambda=1/10
+Rr=80*%pi^2*(1/10)^2;//in Ohm
+disp(Rr,"Radiation resistance in Ohm: ");
+Eta=Rr/(Rr+Rl);//Unitless
+disp(Eta*100,"Antenna Efficiency in % : "); \ No newline at end of file
diff --git a/1697/CH1/EX1.9/Exa1_9.sce b/1697/CH1/EX1.9/Exa1_9.sce
new file mode 100755
index 000000000..9ac23e215
--- /dev/null
+++ b/1697/CH1/EX1.9/Exa1_9.sce
@@ -0,0 +1,9 @@
+//Exa 1.9
+clc;
+clear;
+close;
+//given data :
+r=100;//in Km
+W=100;//in KW
+Erms=sqrt(90*W*1000)/(r*1000);//in V/m
+disp(Erms,"Strength of Electric Field in V/m : "); \ No newline at end of file
diff --git a/1697/CH10/EX10.1/Exa10_1.sce b/1697/CH10/EX10.1/Exa10_1.sce
new file mode 100755
index 000000000..d6324bb9e
--- /dev/null
+++ b/1697/CH10/EX10.1/Exa10_1.sce
@@ -0,0 +1,17 @@
+//Exa 10.1
+clc;
+clear;
+close;
+//given data :
+H=500;//in km
+n=0.8;//in m
+f_muf=10;//in MHz
+f_muf=f_muf*10^6;//in Hz
+f=10;//in MHz
+f=f*10^6;//in Hz
+// Formula : n=sqrt(1-81*N/f^2)
+Nmax=(1-n^2)*f^2/81;//in Hz;
+fc=9*sqrt(Nmax);//in Hz
+Dskip=2*H*sqrt((f_muf/fc)^2-1);//in Km
+disp(Dskip,"Assuming the earth is flat the range in Km : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH10/EX10.10/Exa10_10.sce b/1697/CH10/EX10.10/Exa10_10.sce
new file mode 100755
index 000000000..712142d2f
--- /dev/null
+++ b/1697/CH10/EX10.10/Exa10_10.sce
@@ -0,0 +1,10 @@
+//Exa 10.10
+clc;
+clear;
+close;
+//given data :
+n=0.6;//refractive index
+N=4.23*10^4;//in m^-3
+//Formula : n=sqrt(1-81*N/f^2)
+f=sqrt(81*N/(1-n^2));//in Hz
+disp(f/1000,"Frequency of wave propagation in KHz : "); \ No newline at end of file
diff --git a/1697/CH10/EX10.11/Exa10_11.sce b/1697/CH10/EX10.11/Exa10_11.sce
new file mode 100755
index 000000000..5ce3919dd
--- /dev/null
+++ b/1697/CH10/EX10.11/Exa10_11.sce
@@ -0,0 +1,10 @@
+//Exa 10.11
+clc;
+clear;
+close;
+//given data :
+n=0.8;//refractive index
+N=500;//in cm^-3
+//Formula : n=sqrt(1-81*N/f^2)
+f=sqrt(81*N/(1-n^2));//in KHz
+disp(f,"Frequency of wave propagation in KHz : "); \ No newline at end of file
diff --git a/1697/CH10/EX10.2/Exa10_2.sce b/1697/CH10/EX10.2/Exa10_2.sce
new file mode 100755
index 000000000..febfe3749
--- /dev/null
+++ b/1697/CH10/EX10.2/Exa10_2.sce
@@ -0,0 +1,20 @@
+//Exa 10.2
+clc;
+clear;
+close;
+//given data :
+n=0.8;//in m
+H=500;//in km
+a=6370;//in km
+D=1349.07;//in Km
+f_muf=10;//in MHz
+f_muf=f_muf*10^6;//in Hz
+f=10;//in MHz
+f=f*10^6;//in Hz
+// Formula : n=sqrt(1-81*N/f^2)
+Nmax=(1-n^2)*f^2/81;//in Hz;
+fc=9*sqrt(Nmax);//in Hz
+// Formula : f_muf/fc=sqrt(D^2/(4*(H+D^2/(8*a))))+1
+D1=2*[H+D^2/(8*a)]*sqrt((f_muf/fc)^2-1);//in Km
+Dskip=2*H*sqrt((f_muf/fc)^2-1);//in Km
+disp(D1,"Assuming the earth is curved the ground range in Km : "); \ No newline at end of file
diff --git a/1697/CH10/EX10.3/Exa10_3.sce b/1697/CH10/EX10.3/Exa10_3.sce
new file mode 100755
index 000000000..b8bb03182
--- /dev/null
+++ b/1697/CH10/EX10.3/Exa10_3.sce
@@ -0,0 +1,9 @@
+//Exa 10.3
+clc;
+clear;
+close;
+//given data :
+Nmax=2.48*10^6;//in cm^-3
+Nmax=2.48*10^6*10^-6;//in m^-3
+fc=9*sqrt(Nmax);//in MHz
+disp(fc,"Critical frequency in MHz : "); \ No newline at end of file
diff --git a/1697/CH10/EX10.4/Exa10_4.sce b/1697/CH10/EX10.4/Exa10_4.sce
new file mode 100755
index 000000000..e591734d4
--- /dev/null
+++ b/1697/CH10/EX10.4/Exa10_4.sce
@@ -0,0 +1,11 @@
+//Exa 10.4
+clc;
+clear;
+close;
+//given data :
+H=200;//in Km
+D=4000;//in Km
+fc=5;//in MHz
+f_muf=fc*sqrt(1+(D/(2*H))^2);//in MHz
+disp(f_muf,"MUF for the given path in MHz : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH10/EX10.5/Exa10_5.sce b/1697/CH10/EX10.5/Exa10_5.sce
new file mode 100755
index 000000000..526e786fa
--- /dev/null
+++ b/1697/CH10/EX10.5/Exa10_5.sce
@@ -0,0 +1,26 @@
+//Exa 10.5
+clc;
+clear;
+close;
+//given data :
+//For F1 layer :
+disp("For F1 layer :");
+Nmax=2.3*10^6;//in cm^3
+Nmax=2.3*10^6*10^-6;//in m^3
+fc=9*sqrt(Nmax);//in MHz
+disp(fc,"Critical frequency in MHz : ");
+
+//For F2 layer :
+disp("For F2 layer :");
+Nmax=3.5*10^6;//in cm^3
+Nmax=3.5*10^6*10^-6;//in m^3
+fc=9*sqrt(Nmax);//in MHz
+disp(fc,"Critical frequency in MHz : ");
+
+//For F3 layer :
+disp("For F3 layer :");
+Nmax=1.7*10^6;//in cm^3
+Nmax=1.7*10^6*10^-6;//in m^3
+fc=9*sqrt(Nmax);//in MHz
+disp(fc,"Critical frequency in MHz : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH10/EX10.6/Exa10_6.sce b/1697/CH10/EX10.6/Exa10_6.sce
new file mode 100755
index 000000000..c971304e0
--- /dev/null
+++ b/1697/CH10/EX10.6/Exa10_6.sce
@@ -0,0 +1,11 @@
+//Exa 10.6
+clc;
+clear;
+close;
+//given data :
+n=0.7;//refractive index
+N=400;//in cm^-3
+//Formula : n=sqrt(1-81*N/f^2)
+f=sqrt(81*N/(1-n^2));//in KHz
+disp(f,"Frequency of wave propagation in KHz : ");
+//Note : Unit of Answer in the book is MHz. It is written by mistake. It is accurately calculated by scilab in KHz. \ No newline at end of file
diff --git a/1697/CH10/EX10.7/Exa10_7.sce b/1697/CH10/EX10.7/Exa10_7.sce
new file mode 100755
index 000000000..41dd4ee81
--- /dev/null
+++ b/1697/CH10/EX10.7/Exa10_7.sce
@@ -0,0 +1,12 @@
+//Exa 10.7
+clc;
+clear;
+close;
+//given data :
+HT=169;//in meter
+HR=20;//in meter
+d=4.12*(sqrt(HT)+sqrt(HR));//in Km
+disp(d,"Maximum distance in Km : ");
+r_dash=(4/3)*6370/1000;//in Km
+RadioHorizon=sqrt(2*r_dash*HT);//in Km
+disp(RadioHorizon,"Radio Horizon in Km : "); \ No newline at end of file
diff --git a/1697/CH10/EX10.8/Exa10_8.sce b/1697/CH10/EX10.8/Exa10_8.sce
new file mode 100755
index 000000000..596dfcd79
--- /dev/null
+++ b/1697/CH10/EX10.8/Exa10_8.sce
@@ -0,0 +1,12 @@
+//Exa 10.8
+clc;
+clear;
+close;
+//given data :
+H=200;//in Km
+Beta=20;//in Degree
+a=6370;//in Km
+D_flat=2*H/tan(Beta*%pi/180);//in Km
+disp(D_flat,"If earth assumed to be flat transmission path distance in Km : ");
+D_curved=2*a*[(90*%pi/180-Beta*%pi/180)-asin(a*cos(Beta*%pi/180)/(a+H))]
+disp(D_curved,"If earth assumed to be curved transmission path distance in Km : "); \ No newline at end of file
diff --git a/1697/CH10/EX10.9/Exa10_9.sce b/1697/CH10/EX10.9/Exa10_9.sce
new file mode 100755
index 000000000..6ec4cff16
--- /dev/null
+++ b/1697/CH10/EX10.9/Exa10_9.sce
@@ -0,0 +1,10 @@
+//Exa 10.9
+clc;
+clear;
+close;
+//given data :
+R=6370;//in Km
+hm=400;//in Km
+//Formula : d=2*R*Q=2*R*acos(R/(R+hm))
+d=2*R*acos(R/(R+hm));//in Km
+disp(d,"Maximum Range in a single range transmission in Km : "); \ No newline at end of file
diff --git a/1697/CH3/EX3.1/Exa3_1.sce b/1697/CH3/EX3.1/Exa3_1.sce
new file mode 100755
index 000000000..ee2344d28
--- /dev/null
+++ b/1697/CH3/EX3.1/Exa3_1.sce
@@ -0,0 +1,10 @@
+//Exa 3.1
+clc;
+clear;
+close;
+//given data :
+E=10;//in V/m
+ETA_o=120*%pi;//Constant
+H=E/ETA_o;//in A/m
+disp(H,"The Magnetic Field Strength in A/m : ");
+//Note : Answer is wrong in the book. \ No newline at end of file
diff --git a/1697/CH3/EX3.10/Exa3_10.sce b/1697/CH3/EX3.10/Exa3_10.sce
new file mode 100755
index 000000000..6ea6532c9
--- /dev/null
+++ b/1697/CH3/EX3.10/Exa3_10.sce
@@ -0,0 +1,10 @@
+//Exa 3.10
+clc;
+clear;
+close;
+//given data :
+P1=30;//in KW
+P1=P1*1000;//in W
+P2=5000;//in W
+Gdb=10*log10(P1/P2);//unitless
+disp(Gdb,"Front to back ratio = Gdb = "); \ No newline at end of file
diff --git a/1697/CH3/EX3.11/Exa3_11.sce b/1697/CH3/EX3.11/Exa3_11.sce
new file mode 100755
index 000000000..5908813b7
--- /dev/null
+++ b/1697/CH3/EX3.11/Exa3_11.sce
@@ -0,0 +1,10 @@
+//Exa 3.11
+clc;
+clear;
+close;
+//given data :
+f=10;//in GHz
+f=f*10^9;//in Hz
+Gt=40;//in dB
+Gr=40;//in dB
+disp(Gt,"Gain = Gt = Gr : "); \ No newline at end of file
diff --git a/1697/CH3/EX3.12/Exa3_12.sce b/1697/CH3/EX3.12/Exa3_12.sce
new file mode 100755
index 000000000..3c42bcd89
--- /dev/null
+++ b/1697/CH3/EX3.12/Exa3_12.sce
@@ -0,0 +1,21 @@
+//Exa 3.12
+clc;
+clear;
+close;
+//given data :
+L=10;//in m
+f=1.5;//in MHz
+f=f*10^6;//in Hz
+X=350;//in Ohm
+Q=100;//Coil parameter
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in Meter
+l_eff=2*L/2;//in m
+Re=2*X/Q;//in Ohm
+Rr=40*%pi^2*(l_eff/lambda)^2;//in hm
+Gd=(3/2)*(lambda^2/(4*%pi));//unitless
+ETA=Rr/(Rr+Re);//Efficiency unitless
+Gp=Gd*ETA;////unitless
+disp(ETA*100,"Antenna Efficiency in % : ");
+disp(Gp,"Power gain : ");
+//Note : Answer of Gp is wrong in the book. \ No newline at end of file
diff --git a/1697/CH3/EX3.13/Exa3_13.sce b/1697/CH3/EX3.13/Exa3_13.sce
new file mode 100755
index 000000000..89555a774
--- /dev/null
+++ b/1697/CH3/EX3.13/Exa3_13.sce
@@ -0,0 +1,9 @@
+//Exa 3.13
+clc;
+clear;
+close;
+//given data :
+delf=600;//in KHz
+fr=50;//in MHz
+Q=(fr*10^6)/(delf*10^3);//unitless
+disp(Q,"Quality Factor : "); \ No newline at end of file
diff --git a/1697/CH3/EX3.14/Exa3_14.sce b/1697/CH3/EX3.14/Exa3_14.sce
new file mode 100755
index 000000000..064d28c23
--- /dev/null
+++ b/1697/CH3/EX3.14/Exa3_14.sce
@@ -0,0 +1,8 @@
+//Exa 3.14
+clc;
+clear;
+close;
+//given data :
+OmegaA=4*%pi;//For isotropic Antenna
+D=4*%pi/OmegaA;//Directivity : Unitless
+disp(D,"Directivity of Isotropic Antenna : "); \ No newline at end of file
diff --git a/1697/CH3/EX3.15/Exa3_15.sce b/1697/CH3/EX3.15/Exa3_15.sce
new file mode 100755
index 000000000..3d3cbd3ab
--- /dev/null
+++ b/1697/CH3/EX3.15/Exa3_15.sce
@@ -0,0 +1,10 @@
+//Exa 3.15
+clc;
+clear;
+close;
+//given data :
+D=500;//Directivity : Unitless
+format('v',6)
+disp("D = (4*%pi/lambda^2)*Aem");
+disp("Aem = D*lambda^2/(4*%pi)");
+disp("Aem ="+string(D/(4*%pi))+"lambda^2"); \ No newline at end of file
diff --git a/1697/CH3/EX3.16/Exa3_16.sce b/1697/CH3/EX3.16/Exa3_16.sce
new file mode 100755
index 000000000..b3d718b23
--- /dev/null
+++ b/1697/CH3/EX3.16/Exa3_16.sce
@@ -0,0 +1,10 @@
+//Exa 3.16
+clc;
+clear;
+close;
+//given data
+Fn_dB=1.1;//in dB
+Fn=10^(Fn_dB/10);//unitless
+To=290;//in Kelvin
+Te=To*(Fn-1);//in Kelvin
+disp(Te,"Effective Noise Temperature in Kelvin : ");
diff --git a/1697/CH3/EX3.19/Exa3_19.sce b/1697/CH3/EX3.19/Exa3_19.sce
new file mode 100755
index 000000000..e41968f2f
--- /dev/null
+++ b/1697/CH3/EX3.19/Exa3_19.sce
@@ -0,0 +1,21 @@
+//Exa 3.19
+clc;
+clear;
+close;
+//given data
+format('v',9);
+D=6;//in meter
+f=10;//in GHz
+f=f*10^9;//in Hz
+Aactual=%pi*D^2/4;//in m^2
+Ae=0.6*Aactual;//in m^2
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in Meter
+G=4*%pi*Ae/lambda^2;//Unitless
+Gdb=10*log10(G);//gain in dB
+BWFN=140*lambda/D;//in degree
+disp(G,"Gain : ");
+disp(Gdb,"Gain in dB : ");
+disp(BWFN,"Beamwidth in degree : ");
+disp(Ae,"Capture Area in m^2 : ");
+//Note : Answer in the book is not accurate. \ No newline at end of file
diff --git a/1697/CH3/EX3.2/Exa3_2.sce b/1697/CH3/EX3.2/Exa3_2.sce
new file mode 100755
index 000000000..4ea7ed4d6
--- /dev/null
+++ b/1697/CH3/EX3.2/Exa3_2.sce
@@ -0,0 +1,11 @@
+//Exa 3.2
+clc;
+clear;
+close;
+//given data :
+W=25;//in KW
+W=W*10^3;//in W
+r=3;//in Km
+r=r*10^3;//in m
+Erms=sqrt(90*W)/r;//in V/m
+disp(Erms,"Field strength at reciever in V/m :"); \ No newline at end of file
diff --git a/1697/CH3/EX3.20/Exa3_20.sce b/1697/CH3/EX3.20/Exa3_20.sce
new file mode 100755
index 000000000..7f75a7549
--- /dev/null
+++ b/1697/CH3/EX3.20/Exa3_20.sce
@@ -0,0 +1,11 @@
+//Exa 3.20
+clc;
+clear;
+close;
+//given data
+Gdb=44;//gain in dB
+G=10^(Gdb/10);//gain unitless
+OmegaB=4*%pi/G;//n steradian
+THETA3db=sqrt(4*OmegaB/%pi);//in Radian
+disp(THETA3db,"Beamwidth THETA3db in degree : ");
+//Note : Answer in the book is not accurate. \ No newline at end of file
diff --git a/1697/CH3/EX3.3/Exa3_3.sce b/1697/CH3/EX3.3/Exa3_3.sce
new file mode 100755
index 000000000..c4ccec5ad
--- /dev/null
+++ b/1697/CH3/EX3.3/Exa3_3.sce
@@ -0,0 +1,20 @@
+//Exa 3.3
+clc;
+clear;
+close;
+//given data :
+le=125;//in m
+Irms=5;//in A
+lambda=1.25;//in Km
+lambda=lambda*10^3;//in m
+Rl=10;//in Ohm
+//radiation Resistance
+Rr=(80*%pi^2)*(le/lambda)^2;//in Ohm
+Rr=round(Rr);//in Ohm : approx
+disp(Rr,"Radiation resistance in Ohm : ");
+//Power radiated
+W=(Irms^2)*Rr;//in
+disp(W,"Power radiated in W : ")
+//Antenna efficiency
+ETA=Rr/(Rr+Rl)
+disp(ETA*100,"Antenna efficiency in % : "); \ No newline at end of file
diff --git a/1697/CH3/EX3.4/Exa3_4.sce b/1697/CH3/EX3.4/Exa3_4.sce
new file mode 100755
index 000000000..b4a0e5672
--- /dev/null
+++ b/1697/CH3/EX3.4/Exa3_4.sce
@@ -0,0 +1,23 @@
+//Exa 3.4
+clc;
+clear;
+close;
+//given data :
+r=1;//in Km
+r=r*10^3;//in m
+I=0.5;//in A
+//For theta = 45 degree
+theta=45 ;//in degree
+E=(60*I/r)*((cos(%pi*cos(theta*%pi/180)/2))/sin(theta*%pi/180));
+disp(E*10^3,"E-Field for 45 degree angle in mV/m :");
+ETA_o=120*%pi;//constant
+H=E/ETA_o;//in A/m
+disp(H*10^3,"H-Field for 45 degree angle in mV/m :");
+
+//For theta = 90 degree
+theta=90 ;//in degree
+E=(60*I/r)*((cos(%pi*cos(theta*%pi/180)/2))/sin(theta*%pi/180));
+disp(E*10^3,"E-Field for 90 degree angle in mV/m :");
+ETA_o=120*%pi;//constant
+H=E/ETA_o;//in A/m
+disp(H*10^3,"H-Field for 90 degree angle in mV/m :"); \ No newline at end of file
diff --git a/1697/CH3/EX3.5/Exa3_5.sce b/1697/CH3/EX3.5/Exa3_5.sce
new file mode 100755
index 000000000..e82842e3f
--- /dev/null
+++ b/1697/CH3/EX3.5/Exa3_5.sce
@@ -0,0 +1,14 @@
+//Exa 3.5
+clc;
+clear;
+close;
+//given data :
+//l=lambda/10 meter
+//Assume %pi^2 = 10
+Rl=2;//in Ohm
+disp("Rr=80*%pi^2*(dl/lambda)^2");
+disp("dl/lambda = 1/10 : as l=lambda/10 ");
+Rr=80*10*(1/10)^2;//in Ohm
+disp(Rr,"Radiation Resistance in Ohm : ");
+ETA=Rr/(Rr+Rl);//in Ohm
+disp(ETA*100," Efficiency inn % : "); \ No newline at end of file
diff --git a/1697/CH3/EX3.6/Exa3_6.sce b/1697/CH3/EX3.6/Exa3_6.sce
new file mode 100755
index 000000000..6863a07a5
--- /dev/null
+++ b/1697/CH3/EX3.6/Exa3_6.sce
@@ -0,0 +1,32 @@
+//Exa 3.6
+clc;
+clear;
+close;
+//given data :
+//l=lambda/15 meter
+//Assume %pi^2 = 10
+Rl=2;//in Ohm
+//Gain :
+Gain=5.33/4;//Unitless
+//Directivity
+Rr=80*10*(1/15)^2;//in Ohm
+ETA=Rr/(Rr+Rl);//Unitless
+Directivity=Gain/ETA;//unitless
+//Beam solid angle
+BSA=4*%pi/Directivity;//in steradian
+disp(Directivity,"Directivity : ");
+disp(Gain,"Gain = Pt/Pr = ");
+//Effective aperture
+disp("Effective aperture = G*lambda^2/(4*%pi) ");
+disp(string(Gain/(4*%pi))+"lambda^2");
+disp(BSA,"Beam Solid Angle in steradian : ");
+disp("Radiation Resistance :")
+disp("Rr=80*%pi^2*(dl/lambda)^2 in Ohm");
+disp("dl/lambda = 1/15 : as l=lambda/10 ");
+Rr=80*10*(1/15)^2;//in Ohm
+disp(Rr,"Radiation Resistance in Ohm : ");
+disp("Pt = Area of sphere * (E^2/(120*%pi))");
+disp("Pt = ((4*%pi^2)/(120*%pi))*((60*%pi*I/r)*(dl/lambda)^2)");
+disp("Pt=120*%pi^2*(lambda*15/lambda)*I^2");
+disp("Pt = "+string(120*10/225)+"I^2");
+disp("Pr = I^2*Rr = 4*I^2"); \ No newline at end of file
diff --git a/1697/CH3/EX3.7/Exa3_7.sce b/1697/CH3/EX3.7/Exa3_7.sce
new file mode 100755
index 000000000..7227ca458
--- /dev/null
+++ b/1697/CH3/EX3.7/Exa3_7.sce
@@ -0,0 +1,19 @@
+//Exa 3.7
+clc;
+clear;
+close;
+//given data :
+D=30;//in m
+k=0.55;//illumination efficiency
+f=4;//in GHz
+f=f*10^9;//in Hz
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in Meter
+r=D/2;//in m
+A=%pi*(r^2);//in m^2
+G=(4*%pi/lambda^2)*k*A;//Unitless
+disp(G,"Gain : ");
+HPBW=70*lambda/D;//in Degree
+disp(HPBW,"HPBW in Degree : ");
+BWFN=2*70*lambda/D;//in Degree
+disp(BWFN,"BWFN in Degree : "); \ No newline at end of file
diff --git a/1697/CH3/EX3.8/Exa3_8.sce b/1697/CH3/EX3.8/Exa3_8.sce
new file mode 100755
index 000000000..d04dfdfe9
--- /dev/null
+++ b/1697/CH3/EX3.8/Exa3_8.sce
@@ -0,0 +1,11 @@
+//Exa 3.8
+clc;
+clear;
+close;
+//given data :
+Rl=20;//in Ohm
+Rr=100;//in Ohm
+Gp=25;//power gain
+ETA=Rr/(Rr+Rl);//Unitless
+D=Gp/ETA;//unitless
+disp(D,"Directivity : ") \ No newline at end of file
diff --git a/1697/CH3/EX3.9/Exa3_9.sce b/1697/CH3/EX3.9/Exa3_9.sce
new file mode 100755
index 000000000..20070fbcc
--- /dev/null
+++ b/1697/CH3/EX3.9/Exa3_9.sce
@@ -0,0 +1,9 @@
+//Exa 3.9
+clc;
+clear;
+close;
+//given data :
+lambda=10;//in m
+D=80;//unitless
+Aem=D*lambda^2/(4*%pi);//in m^2
+disp(Aem,"Maximum effective aperture in m^2 : "); \ No newline at end of file
diff --git a/1697/CH4/EX4.13/Exa4_13.sce b/1697/CH4/EX4.13/Exa4_13.sce
new file mode 100755
index 000000000..68e160600
--- /dev/null
+++ b/1697/CH4/EX4.13/Exa4_13.sce
@@ -0,0 +1,16 @@
+//Exa 4.13
+clc;
+clear;
+close;
+//given data :
+n=8;//no. of elements
+BWFN=45;//in degree
+theta=45;//in degree
+f=40;//in MHz
+f=f*10^6;//in Hz
+//Formula : theta=2*asin(2*%pi/(n*dr))
+dr=(2*%pi/n)/sin((theta/2)*(%pi/180));//
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in m
+d=dr*lambda/(2*%pi);//in m
+disp(d,"Distane in meter :"); \ No newline at end of file
diff --git a/1697/CH4/EX4.14/Exa4_14.sce b/1697/CH4/EX4.14/Exa4_14.sce
new file mode 100755
index 000000000..6e93f340e
--- /dev/null
+++ b/1697/CH4/EX4.14/Exa4_14.sce
@@ -0,0 +1,12 @@
+//Exa 4.14
+clc;
+clear;
+close;
+//given data :
+n=10;//no. of elements
+//given : d=lambda/4;//in m
+disp("Llambda=n*d/lambda");
+disp("Putting d=;ambda/4 we get Llambda=n/4");
+Llambda=n/4;//unitless
+D=2*Llambda;//in unitless
+disp(D,"Directivity of broadside uniform array : "); \ No newline at end of file
diff --git a/1697/CH4/EX4.15/Exa4_15.sce b/1697/CH4/EX4.15/Exa4_15.sce
new file mode 100755
index 000000000..d7378f592
--- /dev/null
+++ b/1697/CH4/EX4.15/Exa4_15.sce
@@ -0,0 +1,24 @@
+//Exa 4.15
+clc;
+clear;
+close;
+//given data :
+n=2;//no. of elements
+//given : d=lambda/3 in m
+delta=%pi/3;//in phase difference
+disp("dr=2*%pi*d/lambda");
+disp("Putting d=lambda/3 we get dr=2*%pi/3");
+dr=2*%pi/3;//
+disp("psi=dr*cos(theta)+delta");
+disp("psi=(2*%pi/3)*cos(theta)+%pi/3");
+//Maxima :
+disp("Maxima : cos((%pi/3)*cos(theta)+%pi/6)=1 .....Magnitude");
+disp("(%pi/3)*cos(theta)+%pi/6=K*%pi");
+disp("theta=acos(-1/2+3*k)");
+disp("theta=+120,-120 degree");
+
+//Minima :
+disp("Minima : cos((%pi/3)*cos(theta)+%pi/6)=0");
+disp("(%pi/3)*cos(theta)+%pi/6=(2*k+1)*%pi/2");
+disp("theta=acos(-1/2+(3/2)*(2*k+1))");
+disp("theta=0 degree"); \ No newline at end of file
diff --git a/1697/CH4/EX4.17/Exa4_17.sce b/1697/CH4/EX4.17/Exa4_17.sce
new file mode 100755
index 000000000..0620acb3a
--- /dev/null
+++ b/1697/CH4/EX4.17/Exa4_17.sce
@@ -0,0 +1,22 @@
+//Exa 4.17
+clc;
+clear;
+close;
+//given data :
+MainBeamwidth=45;//in degree
+thetaN=MainBeamwidth/2;//in degree
+thetaN=thetaN*%pi/180;//in radian
+m=5;//no. of elements
+//given : d=lambda/2 in meter
+x=cos(%pi/(2*(m-1)));
+xo=x/cos((%pi/2)*sin(thetaN));//unitless
+disp("E5=ao*z+a1*(2*z^2-1)+a2*(8*z^4-8*z^2+1)");
+disp("We Know that : z=x/xo, E5=T4*xo");
+disp("ao=a1*(2*(x/xo)^2-1)+a2*[8*(x/xo)^4-8*(x/xo)^2+1]=8*x^4-8*x^2+1");
+disp("By comparing the term we have : ");
+disp("a2=xo^4 a1=4*a2-4*xo^2 ao=1+a1-a2 ")
+a2=xo^4;
+a1=4*a2-4*xo^2;
+ao=1+a1-a2;
+disp("And therefore the 5 elements array is given by : ");
+disp(string(a2)+" "+string(a1)+" "+string(2*ao)+" "+string(a1)+" "+string(a2)); \ No newline at end of file
diff --git a/1697/CH4/EX4.18/Exa4_18.sce b/1697/CH4/EX4.18/Exa4_18.sce
new file mode 100755
index 000000000..fa0d5b94e
--- /dev/null
+++ b/1697/CH4/EX4.18/Exa4_18.sce
@@ -0,0 +1,32 @@
+//Exa 4.18
+clc;
+clear;
+close;
+//given data :
+//Side lobe level below main lobe
+disp("Side lobe level below main lobe : ")
+SideLobe=20;//in dB
+r=10^(SideLobe/20);//
+disp(r,"r=") ;
+//No. of elements are 5, n=5
+disp("No. of elements are 5, n=5 :");
+disp("Tchebyscheff polynomials of degree (n-1) is");
+disp("5-1=4");
+disp("T4(xo)=r");
+disp("8*xo^4-8*xo^2+1=10");
+disp("By using alternate formula, we get");
+m=4;
+r=10;
+xo=(1/2)*[{r+sqrt(r^2-1)}^(1/m)+{r-sqrt(r^2-1)}^(1/m)]
+disp(xo,"xo=");
+disp("E5=T4(xo)")
+disp("E5=ao*z+a1*(2*z^2-1)+a2*(8*z^4-8*z^2+1)");
+disp("We Know that : z=x/xo, E5=T4*xo");
+disp("ao=a1*(2*(x/xo)^2-1)+a2*[8*(x/xo)^4-8*(x/xo)^2+1]=8*x^4-8*x^2+1");
+disp("By comparing the term we have : ");
+disp("a2=xo^4 a1=4*a2-4*xo^2 ao=1+a1-a2 ")
+a2=xo^4;
+a1=4*a2-4*xo^2;
+ao=1+a1-a2;
+disp("And therefore the 5 elements array is given by : ");
+disp(string(a2)+" "+string(a1)+" "+string(2*ao)+" "+string(a1)+" "+string(a2)); \ No newline at end of file
diff --git a/1697/CH4/EX4.3/Exa4_3.sce b/1697/CH4/EX4.3/Exa4_3.sce
new file mode 100755
index 000000000..10711c0a6
--- /dev/null
+++ b/1697/CH4/EX4.3/Exa4_3.sce
@@ -0,0 +1,36 @@
+//Exa 4.3
+clc;
+clear;
+close;
+//given data :
+disp("For a two elements arrayy the total field is given by : ");
+disp("E=2*Eo*cos(psi/2)");
+disp("(i) It is a case of braod side array : so, delta = 0");
+disp("psi = Beta*d*cos(theta)+delta")
+disp("d=3*lambda/2");
+disp("Beta*d = (2*%pi/lambda)*(3*lambda/2) = 3*%pi")
+disp("psi = 3*%pi*cos(theta)");
+disp("psi/2 = (3*%pi/2)*cos(theta)");
+disp("The maxima for broad side array occurs when theta = %pi/2");
+disp("Ep = 2*Eo*cos(3*(%pi/2)*cos(%pi/2))");
+disp("Ep = 2*Eo as cos(%pi/2) = 0 and cos(0)=1");
+disp("At half power beamwidth the field becomes Ep/sqrt(2)");
+disp("So, cos(3*(%pi/2)*cos(theta)) = 1/sqrt(2)");
+disp("3*(%pi/2)*cos(theta)=%pi/4");
+disp("cos(theta) = 1/6");
+disp("theta = 80.5 degree")
+theta = 80.5;//in degree
+HPBW=2*(90-theta);//in degree
+disp(HPBW,"HPBW in degree : ");
+disp("(ii) Equal amplitude and different phase(540 degree) : (end fire array) ");
+disp("In case of end fire array : ");
+disp("delta = -Beta*d");
+disp("Beta*d = 540 degree = 3*%pi");
+disp("psi = 3*%pi*cos(theta)-3*%pi = 3*%pi*(cos(theta)-1)");
+disp("E_HPBW = 3*%pi*(cos(theta)-1) = %pi/4 = 1/sqrt(2)");
+disp("3*%pi*(cos(theta)-1) = %pi/4");
+disp("cos(theta) = 1+1/12 = 13/12");
+disp("theta = 33.6 degree");
+theta=33.6;//in degree
+HPBW=2*theta;//in degree
+disp(HPBW,"HPBW in degree : "); \ No newline at end of file
diff --git a/1697/CH4/EX4.4/Exa4_4.sce b/1697/CH4/EX4.4/Exa4_4.sce
new file mode 100755
index 000000000..15257deb7
--- /dev/null
+++ b/1697/CH4/EX4.4/Exa4_4.sce
@@ -0,0 +1,19 @@
+//Exa 4.4
+clc;
+clear;
+close;
+//given data :
+n=10;//no. of elements
+//d=lambda/4 separation in meter
+disp("For broad side array : ")
+disp("D=2*n/(lambda/d)");
+disp("Putting d=lambda/4 we get D=2*n/4")
+D=2*n/4;//directivity : unitless
+Ddb=10*log10(D);//in db
+disp(Ddb,"For broad side array D in db = ");
+disp("For end fire array : ")
+disp("D=4*n/(lambda/d)");
+disp("Putting d=lambda/4 we get D=4*n/4")
+D=4*n/4;//directivity : unitless
+Ddb=10*log10(D);//in db
+disp(Ddb,"For end fire array D in db = "); \ No newline at end of file
diff --git a/1697/CH4/EX4.5/Exa4_5.sce b/1697/CH4/EX4.5/Exa4_5.sce
new file mode 100755
index 000000000..fd5e64c8c
--- /dev/null
+++ b/1697/CH4/EX4.5/Exa4_5.sce
@@ -0,0 +1,20 @@
+//Exa 4.1
+clc;
+clear;
+close;
+//given data :
+delta=-90;//in degree
+//Formula : HPBW=57.3/(sqrt(L/(2*lambda))) in Degree
+n=20;//no. of point sources
+//d=lambda/4;//in meter
+//L=(n-1)*d
+//L=(n-1)*lambda/4
+LBYlambda=(n-1)/4;//in meter
+HPBW=57.3/(sqrt(LBYlambda/2));// in Degree
+disp(HPBW,"HPBW in Degree : ");
+D=4*LBYlambda;//Directivity
+disp(D,"Directivity : ");
+disp("Effective aperture : Ae="+string(D/(4*%pi))+"*lambda^2");
+Omega=4*%pi/D;//in steradian
+disp("Beam Solid Angle : Omega = "+string(Omega));
+//Note : Answer of Ae and omega in the book is wrong. \ No newline at end of file
diff --git a/1697/CH4/EX4.6/Exa4_6.sce b/1697/CH4/EX4.6/Exa4_6.sce
new file mode 100755
index 000000000..8d33e2553
--- /dev/null
+++ b/1697/CH4/EX4.6/Exa4_6.sce
@@ -0,0 +1,18 @@
+//Exa 4.6
+clc;
+clear;
+close;
+//given data :
+n=8;//no. of half wave dipoles
+lambda=100;//in cm
+lambda=lambda*10^-2;//in m
+d=50;//in cm
+d=d*10^-2;//in m
+I=0.5;//in A
+Rr=73;//in Ohm
+Pr=n*I^2*Rr;//in Watts
+disp(Pr,"Pr in Watts : ");
+BWFN=2*lambda/(n*d);//in radian
+HPBW=BWFN/2;//in radian
+disp(HPBW,"HPBW in radian : ");
+disp(HPBW*180/%pi,"HPBW in degree : ") \ No newline at end of file
diff --git a/1697/CH4/EX4.7/Exa4_7.sce b/1697/CH4/EX4.7/Exa4_7.sce
new file mode 100755
index 000000000..ae5a94b14
--- /dev/null
+++ b/1697/CH4/EX4.7/Exa4_7.sce
@@ -0,0 +1,12 @@
+//Exa 4.7
+clc;
+clear;
+close;
+//given data :
+n=10;//no. of elements
+//d=lambda/4 separation in meter
+disp("Do=1.789*4*n*d/lambda");
+disp("Putting d=lambda/4 we get D=1.789*n")
+Do=1.789*n;//directivity : unitless
+Dodb=10*log10(Do);//in db
+disp(Dodb,"Do in db = "); \ No newline at end of file
diff --git a/1697/CH5/EX5.1/Exa5_1.sce b/1697/CH5/EX5.1/Exa5_1.sce
new file mode 100755
index 000000000..730e1d6c7
--- /dev/null
+++ b/1697/CH5/EX5.1/Exa5_1.sce
@@ -0,0 +1,16 @@
+//Exa 5.1
+clc;
+clear;
+close;
+//For Single Turn:
+disp("A=%pi*a^2");
+disp("Putting a=lambda/25 we get : A=%pi*lambda^2/625");
+disp("Radiation Resistance Rr=31171.2*[A/lambda^2]^2");
+disp("Putting A=%pi*lambda^2/625 ");
+Rr_1=31171.2*[%pi/625]^2;//in Ohm
+disp(Rr_1,"radiation Resistance(in Ohm) for single turn : ");
+
+//For Eight Turn:
+N=8;//no. of turns
+Rr=Rr_1*N^2;//in Ohm
+disp(Rr,"radiation Resistance(in Ohm) for Eight turn : "); \ No newline at end of file
diff --git a/1697/CH5/EX5.2/Exa5_2.sce b/1697/CH5/EX5.2/Exa5_2.sce
new file mode 100755
index 000000000..46aa14c8a
--- /dev/null
+++ b/1697/CH5/EX5.2/Exa5_2.sce
@@ -0,0 +1,16 @@
+//Exa 5.2
+clc;
+clear;
+close;
+//Given data :
+f=20;//in MHz
+N=15;//No. of turns
+A=2;//in m^2
+Vrms=200;//in uV
+theta=acos(1);;//in radian
+mu_o=4*%pi*10^-7;//in H/m
+//Formula : Vm=2*%pi*f*mu_o*H*A*N
+Vm=Vrms*sqrt(2);//in uV
+H=(Vm*10^-6)/(2*%pi*f*10^6*mu_o*A*N);//in A/m
+disp(H*1000,"Peak Value of magnetic feld intensity in mA/m : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH5/EX5.3/Exa5_3.sce b/1697/CH5/EX5.3/Exa5_3.sce
new file mode 100755
index 000000000..adb86bc60
--- /dev/null
+++ b/1697/CH5/EX5.3/Exa5_3.sce
@@ -0,0 +1,16 @@
+//Exa 5.3
+clc;
+clear;
+close;
+//Given data :
+f=20;//in MHz
+f=f*10^6;//in Hz
+Wmax=25;//in mW/m^2
+A=10;//in m^2
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in meter
+Rr=31171.2*[A/lambda^2]^2;//iin Ohm
+//Formula : Wmax=V^2/(4*Rr)
+V=sqrt(Wmax*10^-3*4*Rr);//in Volts
+disp(V,"Maximum emf in the loop in Volts : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH5/EX5.4/Exa5_4.sce b/1697/CH5/EX5.4/Exa5_4.sce
new file mode 100755
index 000000000..d259bcfa3
--- /dev/null
+++ b/1697/CH5/EX5.4/Exa5_4.sce
@@ -0,0 +1,21 @@
+//Exa 5.4
+clc;
+clear;
+close;
+//Given data :
+N=20;//turns
+D=1;//in meter
+r=D/2;//in meter
+E=200*10^-6;//in V/m
+L=50*10^-6;//in H
+R=2;//in Ohm
+f=1.5;//in MHz
+f=f*10^6;//in Hz
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in meter
+A=%pi*r^2;//in m^2
+Vrms=2*%pi*E*A*N/lambda;//in Volts
+Q=2*%pi*f*L/R;//unitless
+Vc_rms=Vrms*Q;//in Volts
+disp(Vc_rms*1000,"Voltage across the capacitor in mV :");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH5/EX5.5/Exa5_5.sce b/1697/CH5/EX5.5/Exa5_5.sce
new file mode 100755
index 000000000..195201cf6
--- /dev/null
+++ b/1697/CH5/EX5.5/Exa5_5.sce
@@ -0,0 +1,18 @@
+//Exa 5.5
+clc;
+clear;
+close;
+//Given data :
+N=100;//No. of turns
+A=2;//in m^2
+f=10;//in MHz
+f=f*10^6;//in Hz
+Q=150;//Quality factor
+c=3*10^8;//speed of light in m/s
+lambda=c/f;//in meter
+Erms=10*10^-6;//in V/m
+theta=60;//in degree
+Vrms=2*%pi*Erms*A*N*cos(theta*%pi/180)/lambda;
+Vin=Vrms*Q;//in Volts
+disp(Vin*1000,"Voltage to the receiver in mV : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH5/EX5.6/Exa5_6.sce b/1697/CH5/EX5.6/Exa5_6.sce
new file mode 100755
index 000000000..107f27fc8
--- /dev/null
+++ b/1697/CH5/EX5.6/Exa5_6.sce
@@ -0,0 +1,19 @@
+//Exa 5.1
+clc;
+clear;
+close;
+disp("The emf applied to the end terminals is V. This is being divided in two equal half in each dipole. Hence voltage in each dipole is V/2.");
+disp("By nodal analysis : ");
+disp("V/2=I1*Z11+I2*Z12 eq(1)");
+disp("Where I1,I2 are currents flowing at terminals of dipole1 and dipole 2");
+disp("Z11 and Z12 ares self impedences of dipole1 and mutual impedence between dipole1 and dipole2 respectively.");
+disp("I1=I2");
+disp("V/2=I*(Z11+Z12) eq(2)");
+disp("Both the dipoles are kept lambda/100 apart (i.e., they are very close to each other.)")
+disp("So, Z11=Z12");
+disp("From eq(1) and eq(2) : ");
+disp("V/2=I1*(2*Z11)");
+disp("Z=V/I1=4*Z11");
+Z11=73 ;//Resistance for a dipole in Ohm
+disp("Z=4*73 ohm");
+disp("Z=292 ohm"); \ No newline at end of file
diff --git a/1697/CH6/EX6.1/Exa6_1.sce b/1697/CH6/EX6.1/Exa6_1.sce
new file mode 100755
index 000000000..59fc51b10
--- /dev/null
+++ b/1697/CH6/EX6.1/Exa6_1.sce
@@ -0,0 +1,20 @@
+//Exa 6.1
+clc;
+clear;
+close;
+n=20;//no. of turns
+//Clambda=lambda
+//Slambda=lambda/4
+//HPBW :
+disp("HPBW=52/(Clambda*sqrt(n*Slambda))");
+//Putting values below :
+Clambda=1;//in Meter
+Slambda=1/4;//in Meter
+HPBW=52/(Clambda*sqrt(n*Slambda));//in degree
+disp(HPBW,"HPBW in degree : ");
+//Axial Ratio
+Aratio=(2*n+1)/2;//unitless
+disp(Aratio,"Axial Ratio : ");
+//Gain
+D=12*Clambda^2*n*Slambda;//unitless
+disp(D,"Gain : "); \ No newline at end of file
diff --git a/1697/CH6/EX6.10/Exa6_10.sce b/1697/CH6/EX6.10/Exa6_10.sce
new file mode 100755
index 000000000..f81932345
--- /dev/null
+++ b/1697/CH6/EX6.10/Exa6_10.sce
@@ -0,0 +1,32 @@
+//Exa 6.10
+clc;
+clear;
+close;
+//Given Data:
+Tau=0.7;//Design Factor
+L1=0.3*2;//in meter
+c=3*10^8;//speednof light in m/s
+f1=(c/(2*L1))/10^6;//in MHz
+//Design factor : L1/L2=L2/L3=L3/L4=.......=0.7
+L2=0.7/L1;//in meter
+f2=f1*0.7;//in MHz
+f3=f2*0.7;//in MHz
+f4=f3*0.7;//in MHz
+f5=f4*0.7;//in MHz
+f6=f5*0.7;//in MHz
+f7=f6*0.7;//in MHz
+f8=f7*0.7;//in MHz
+f9=f8*0.7;//in MHz
+f10=f9*0.7;//in MHz
+disp("Cutoff frequencies in MHz :")
+disp(f1,"f1 in MHz :");
+disp(f2,"f2 in MHz :");
+disp(f3,"f3 in MHz :");
+disp(f4,"f4 in MHz :");
+disp(f5,"f5 in MHz :");
+disp(f6,"f6 in MHz :");
+disp(f7,"f7 in MHz :");
+disp(f8,"f8 in MHz :");
+disp(f9,"f9 in MHz :");
+disp(f10,"f10 in MHz :");
+disp(f1-f10,"Passband="); \ No newline at end of file
diff --git a/1697/CH6/EX6.11/Exa6_11.sce b/1697/CH6/EX6.11/Exa6_11.sce
new file mode 100755
index 000000000..719157223
--- /dev/null
+++ b/1697/CH6/EX6.11/Exa6_11.sce
@@ -0,0 +1,24 @@
+//Exa 6.11
+clc;
+clear;
+close;
+//Given Data:
+disp("Assuming typical values for f as 0.2lamda in E-plane and 0.375lambda in H-plane");
+//b=10*lambda ;mouth height
+//delta=0.8*lambda
+disp("Length :")
+disp("L=b^2/(8*lambda)");
+disp("L="+string(10^2/(8*0.2))+"lambda");
+disp("Flare Angle (Theta):")
+disp("Theta=atan(b/(2*L))");
+disp("Theta="+string(10/(2*(10^2/(8*0.2))))+" radian");
+Theta=(10/(2*(10^2/(8*0.2))))*180/%pi;//in Degree
+disp(Theta,"Flare Angle Theta in degree : ");
+disp("Flare Angle (fi):")
+disp("fi=acos(L/(L+delta))=acos((10^2/(8*0.2))/((10^2/(8*0.2))+0.375))");
+disp("fi="+string(acos((10^2/(8*0.2))/((10^2/(8*0.2))+0.375)))+" radian");
+fi=(acos((10^2/(8*0.2))/((10^2/(8*0.2))+0.375)))*180/%pi;//in Degree
+disp(fi,"Flare angle fi in degree : ");
+disp("Width :");
+disp("Width, a=2*L*tan(fi)");
+disp("a="+string(2*62.5*tan((acos((10^2/(8*0.2))/((10^2/(8*0.2))+0.375)))))+"lambda"); \ No newline at end of file
diff --git a/1697/CH6/EX6.2/Exa6_2.sce b/1697/CH6/EX6.2/Exa6_2.sce
new file mode 100755
index 000000000..868146e83
--- /dev/null
+++ b/1697/CH6/EX6.2/Exa6_2.sce
@@ -0,0 +1,19 @@
+//Exa 6.2
+clc;
+clear;
+close;
+//Part (a): Given data :
+disp("Part (a) : At the center frequency with a circumference of lambda, the directivity of an axial mode helix is, : D=12*n*Slambda");
+n=20;//no. of turns
+Slambda=0.472;//in meter
+D=12*n*Slambda;//in meter
+disp("Ae=(lambda^2/(4*%pi))*D");
+disp("Ae="+string(1/(4*%pi*D))+"lambda^2");
+disp("Let this be the area of a square. The space between the elements is :")
+disp("d=sqrt(Ae)");
+disp("d="+string(sqrt(1/(4*%pi*D)))+"lambda");
+disp("Part (b) : With a space of 3*lambda the total effective area : ");
+disp("Ae=9.02*lambda^2*4");
+disp("Ae="+string(9.02*4)+"lambda^2");
+disp("D=4*%pi*Ae/lambda^2");
+disp("D="+string(4*%pi*36.08));//unitless \ No newline at end of file
diff --git a/1697/CH6/EX6.3/Exa6_3.sce b/1697/CH6/EX6.3/Exa6_3.sce
new file mode 100755
index 000000000..13aebd002
--- /dev/null
+++ b/1697/CH6/EX6.3/Exa6_3.sce
@@ -0,0 +1,16 @@
+//Exa 6.3
+clc;
+clear;
+close;
+//from 7dBi gain graph the data obtained is given below :
+K=1.2;//Scale constant
+alfa=1.5;//Apex angle in degree
+Slambda=0.15;
+disp("K^n=F or n=logF/logK");
+F=4;
+n=log10(F)/log10(K);
+n=ceil(n);
+nplus1=n+1;
+disp(alfa,"Apex Angle in degree : ");
+disp(K,"Sale constant :");
+disp(n,"No. of elements : "); \ No newline at end of file
diff --git a/1697/CH6/EX6.4/Exa6_4.sce b/1697/CH6/EX6.4/Exa6_4.sce
new file mode 100755
index 000000000..6b2098894
--- /dev/null
+++ b/1697/CH6/EX6.4/Exa6_4.sce
@@ -0,0 +1,13 @@
+//Exa 6.4
+clc;
+clear;
+close;
+//Given data :
+//d=10*lambda
+disp("d=10*lambda");
+disp("Power Gain : G=6*(d/lambda)^2");
+disp("Putting value of d, we get G=6*10^2")
+G=6*10^2;//unitless
+disp(G,"Power gain : ");
+G_dB=10*log10(G);//in dB
+disp(G_dB,"Power Gain in dB : "); \ No newline at end of file
diff --git a/1697/CH6/EX6.5/Exa6_5.sce b/1697/CH6/EX6.5/Exa6_5.sce
new file mode 100755
index 000000000..ce75c4a5d
--- /dev/null
+++ b/1697/CH6/EX6.5/Exa6_5.sce
@@ -0,0 +1,20 @@
+//Exa 6.5
+clc;
+clear;
+close;
+//Given Data:
+f=10;//in GHz
+f=f*10^9;//in Hz
+BWFN=10;//in degree
+c=3*10^8;//Speed of light in m/s
+lambda=c/f;//in meter
+//Part (a):
+d=140*lambda/BWFN;//in meter
+disp(d,"Diameter of a parabolic Antenna in meter : ");
+//Part (b):
+HPBW=58*lambda/d;//in degree
+disp(HPBW,"3-dB Beamwidth in degree :");
+//Part (c):
+Gp=6*(d/lambda)^2;//gain
+Gp_dB=10*log10(Gp);//in dB
+disp(Gp_dB,"Power Gain in dB : "); \ No newline at end of file
diff --git a/1697/CH6/EX6.6/Exa6_6.sce b/1697/CH6/EX6.6/Exa6_6.sce
new file mode 100755
index 000000000..fabf4de97
--- /dev/null
+++ b/1697/CH6/EX6.6/Exa6_6.sce
@@ -0,0 +1,20 @@
+//Exa 6.6
+clc;
+clear;
+close;
+//Given Data:
+f=1430;//in MHz
+f=f*10^6;//in Hz
+d=64;//in meter
+c=3*10^8;//Speed of light in m/s
+lambda=c/f;//in meter
+//Part (a):
+HPBW=70*lambda/d;//in degree
+disp(HPBW,"HPBW in degree :");
+//Part (b):
+BWFN=140*lambda/d;//in degree
+disp(BWFN,"BWFN in degree :");
+//Part (c):
+Gp=6*(d/lambda)^2;//gain
+Gp_dB=10*log10(Gp);//in dB
+disp(Gp_dB,"Power Gain in dB : "); \ No newline at end of file
diff --git a/1697/CH6/EX6.7/Exa6_7.sce b/1697/CH6/EX6.7/Exa6_7.sce
new file mode 100755
index 000000000..bf999fbc8
--- /dev/null
+++ b/1697/CH6/EX6.7/Exa6_7.sce
@@ -0,0 +1,14 @@
+//Exa 6.7
+clc;
+clear;
+close;
+//Given Data:
+f=15;//in GHz
+f=f*10^9;//in Hz
+Gp_dB=75;//in dB
+c=3*10^8;//Speed of light in m/s
+lambda=c/f;//in meter
+//Formula : Gp=9.87*(d/lambda)^2
+//Formula : Gp_dB=10log10(Gp)
+d=sqrt((10^(Gp_dB/10))*lambda^2/9.87);//in meter
+disp(d,"Diameter of a parabolic reflector in meter :"); \ No newline at end of file
diff --git a/1697/CH6/EX6.8/Exa6_8.sce b/1697/CH6/EX6.8/Exa6_8.sce
new file mode 100755
index 000000000..2d293469f
--- /dev/null
+++ b/1697/CH6/EX6.8/Exa6_8.sce
@@ -0,0 +1,13 @@
+//Exa 6.8
+clc;
+clear;
+close;
+//Given Data:
+f=5000;//in MHz
+f=f*10^6;//in Hz
+d=10;//in feet
+d=d*0.3048;//in meter
+c=3*10^8;//Speed of light in m/s
+lambda=c/f;//in meter
+r=2*d^2/lambda;//in meter
+disp(r,"Minimum distance between primary and secondary antenna in meter :"); \ No newline at end of file
diff --git a/1697/CH6/EX6.9/Exa6_9.sce b/1697/CH6/EX6.9/Exa6_9.sce
new file mode 100755
index 000000000..59e68fefc
--- /dev/null
+++ b/1697/CH6/EX6.9/Exa6_9.sce
@@ -0,0 +1,24 @@
+//Exa 6.9
+clc;
+clear;
+close;
+//Given Data:
+K=55;//Aperture Efficiency in %
+K=K/100;//Aperture Efficiency
+f=15;//in GHz
+f=f*10^9;//in Hz
+c=3*10^8;//Speed of light in m/s
+lambda=c/f;//in meter
+G_dB=30;//in dB
+G=10^(G_dB/10);//Gain unitless
+//Formula : G=4*%pi*K*A/lambda^2
+A=(G*lambda^2)/(4*%pi*K);//in m^2
+disp(A,"Diameter of parabolic reflector in m^2 :");
+//Part (b)
+d=sqrt(4*A/%pi);//in meter
+HPBW=70*lambda/d;//in degree
+disp(HPBW,"HPBW in degree : ");
+//Part (c)
+BWFN=140*lambda/d;//in Degree
+disp(BWFN,"BWFN in degree : ");
+//Note : Answer in the book is not accurate. \ No newline at end of file
diff --git a/1697/CH7/EX7.1/Exa7_1.sce b/1697/CH7/EX7.1/Exa7_1.sce
new file mode 100755
index 000000000..3b4ae9052
--- /dev/null
+++ b/1697/CH7/EX7.1/Exa7_1.sce
@@ -0,0 +1,13 @@
+//Exa 7.1
+clc;
+clear;
+close;
+//given data :
+f=6;//in GHz
+f=f*10^9;//in Hz
+d=10;//in feet
+d=3.048;//in meter
+c=3*10^8;//in m/s
+lambda=c/f;//in meters
+rmin=2*d^2/lambda;//in meters
+disp(rmin,"Minimumseparation distance in meters : "); \ No newline at end of file
diff --git a/1697/CH7/EX7.2/Exa7_2.sce b/1697/CH7/EX7.2/Exa7_2.sce
new file mode 100755
index 000000000..d5a05295c
--- /dev/null
+++ b/1697/CH7/EX7.2/Exa7_2.sce
@@ -0,0 +1,12 @@
+//Exa 7.2
+clc;
+clear;
+close;
+//given data :
+GP=12.5;//unitless
+P_dB=23;//in dB
+P=10^(P_dB/10);//unitless
+G=GP*P;//unitless
+GdB=GP+P_dB;//in dB
+disp(GdB,"Gain of large antenna : ");
+//Note : Answer in the book is wrong. \ No newline at end of file
diff --git a/1697/CH7/EX7.3/Exa7_3.sce b/1697/CH7/EX7.3/Exa7_3.sce
new file mode 100755
index 000000000..138bc1305
--- /dev/null
+++ b/1697/CH7/EX7.3/Exa7_3.sce
@@ -0,0 +1,10 @@
+//Exa 7.3
+clc;
+clear;
+close;
+//given data :
+disp("Open mouth aperture, D = 10*lambda");
+disp("Power gain : GP = 6*(D/labda)^2");
+GP=6*10^2;//unitless
+GPdB=10*log10(GP)
+disp(GPdB,"Power gain in dB : "); \ No newline at end of file
diff --git a/1697/CH7/EX7.4/Exa7_4.sce b/1697/CH7/EX7.4/Exa7_4.sce
new file mode 100755
index 000000000..5c36424ba
--- /dev/null
+++ b/1697/CH7/EX7.4/Exa7_4.sce
@@ -0,0 +1,13 @@
+//Exa 7.4
+clc;
+clear;
+close;
+//given data :
+f=3000;//in MHz
+f=f*10^6;//in Hz
+d=20;//in feet
+d=20*0.3048;//in meter
+c=3*10^8;//in m/s
+lambda=c/f;//in meters
+r=2*d^2/lambda;//in meters
+disp(r,"Minimum distance between primary and secondary in meters : "); \ No newline at end of file
diff --git a/1697/CH7/EX7.5/Exa7_5.sce b/1697/CH7/EX7.5/Exa7_5.sce
new file mode 100755
index 000000000..9d3f941bb
--- /dev/null
+++ b/1697/CH7/EX7.5/Exa7_5.sce
@@ -0,0 +1,12 @@
+//Exa 7.5
+clc;
+clear;
+close;
+//given data :
+f=1.2;//in GHz
+f=f*10^9;//in Hz
+BWFN=5;//in degree
+c=3*10^8;//in m/s
+lambda=c/f;//in meters
+D=140*lambda/BWFN;//in meters
+disp(D,"Diameter of a paraboloidal reflector in meters : "); \ No newline at end of file
diff --git a/1697/CH7/EX7.6/Exa7_6.sce b/1697/CH7/EX7.6/Exa7_6.sce
new file mode 100755
index 000000000..62a093c82
--- /dev/null
+++ b/1697/CH7/EX7.6/Exa7_6.sce
@@ -0,0 +1,17 @@
+//Exa 7.6
+clc;
+clear;
+close;
+//given data :
+f=9;//in GHz
+f=f*10^9;//in Hz
+c=3*10^8;//in m/s
+lambda=c/f;//in meters
+r=35;//in cm
+r=r*10^-2;//in meters
+Attenuation=9.8;//in dB
+//Formula : 10*log10(WT/Wr) = 9.8dB
+WTbyWr=10^(Attenuation/10);//unitless
+D=(4*%pi*r/lambda)*(sqrt(1/WTbyWr));//unitless
+D_dB=10*log10(D);
+disp(D_dB,"Gain of the horn in dB : "); \ No newline at end of file
diff --git a/1697/CH9/EX5.5/Exa9_5.sce b/1697/CH9/EX5.5/Exa9_5.sce
new file mode 100755
index 000000000..1ce904217
--- /dev/null
+++ b/1697/CH9/EX5.5/Exa9_5.sce
@@ -0,0 +1,9 @@
+//Exa 9.5
+clc;
+clear;
+close;
+//given data :
+HT=3000;//in meter
+HR=6000;//in meter
+d=4.12*(sqrt(HT)+sqrt(HR));//in Km
+disp(d,"Maximum possible distance in Km : "); \ No newline at end of file
diff --git a/1697/CH9/EX9.1/Exa9_1.sce b/1697/CH9/EX9.1/Exa9_1.sce
new file mode 100755
index 000000000..6cd874c0a
--- /dev/null
+++ b/1697/CH9/EX9.1/Exa9_1.sce
@@ -0,0 +1,24 @@
+//Exa 9.1
+clc;
+clear;
+close;
+//given data :
+HT=50;//in meter
+HR=10;//in meter
+f=60;//in MHz
+P=10;//in KW
+D=10;//in Km
+D=D*10^3;//in m
+c=3*10^8;//speed of light in m/s
+lambda=c/(f*10^6);//in meter
+//Part (i)
+d=3.55*(sqrt(HT)+sqrt(HR));//in Km
+disp(d,"Maximum line of sight range in Km : ");
+//Part (ii)
+Et=88*sqrt(P*1000)*HT*HR/(lambda*D^2)
+disp(Et,"The field strength at 10 Km in V/m: ");
+//Part (iii)
+//Formula : Et=88*sqrt(p)*HT*HR/(lambda*D^2)
+Et=1;//in mV/m
+D=sqrt(88*sqrt(P*1000)*HT*HR/(lambda*Et*10^-3));//in m
+disp(D/1000,"Distance in Km : "); \ No newline at end of file
diff --git a/1697/CH9/EX9.2/Exa9_2.sce b/1697/CH9/EX9.2/Exa9_2.sce
new file mode 100755
index 000000000..bf84237b8
--- /dev/null
+++ b/1697/CH9/EX9.2/Exa9_2.sce
@@ -0,0 +1,10 @@
+//Exa 9.2
+clc;
+clear;
+close;
+//given data :
+P=200;//in KW
+D=20;//in Km
+D=D*10^3;//in m
+E=300*sqrt(P)/D;//in V/m
+disp(E*10^3,"Field Strength at 20 Km in mV/m:") \ No newline at end of file
diff --git a/1697/CH9/EX9.3/Exa9_3.sce b/1697/CH9/EX9.3/Exa9_3.sce
new file mode 100755
index 000000000..6e377414e
--- /dev/null
+++ b/1697/CH9/EX9.3/Exa9_3.sce
@@ -0,0 +1,15 @@
+//Exa 9.3
+clc;
+clear;
+close;
+//given data :
+HT=10;//in meter
+HR=3;//in meter
+P=200;//in W
+D=50;//in Km
+D=D*10^3;//in Km
+f=150;//in MHz
+c=3*10^8;//speed of light in m/s
+lambda=c/(f*10^6);//in meter
+E=88*sqrt(P)*HT*HR/(lambda*D^2);//in m
+disp(E*10^6,"Field Strength at 20 Km in microV/m:") \ No newline at end of file
diff --git a/1697/CH9/EX9.4/Exa9_4.sce b/1697/CH9/EX9.4/Exa9_4.sce
new file mode 100755
index 000000000..23f382640
--- /dev/null
+++ b/1697/CH9/EX9.4/Exa9_4.sce
@@ -0,0 +1,10 @@
+//Exa 9.4
+clc;
+clear;
+close;
+//given data :
+HT=100;//in meter
+d=60;//in Km
+//Formula : d=4.12*(sqrt(HT)+sqrt(HR));//in Km
+HR=(d/4.12-sqrt(HT))^2;//in meter
+disp(HR,"Height of receiving antenna in meter : "); \ No newline at end of file
diff --git a/1697/CH9/EX9.6/Exa9_6.sce b/1697/CH9/EX9.6/Exa9_6.sce
new file mode 100755
index 000000000..51a543240
--- /dev/null
+++ b/1697/CH9/EX9.6/Exa9_6.sce
@@ -0,0 +1,9 @@
+//Exa 9.6
+clc;
+clear;
+close;
+//given data :
+f_MHz=3000;//in MHz
+d_Km=384000;//in Km
+PathLoss=32.45+20*log10(f_MHz)+20*log10(d_Km);//in dB
+disp(PathLoss,"Path loss in dB : "); \ No newline at end of file
diff --git a/1697/CH9/EX9.7/Exa9_7.sce b/1697/CH9/EX9.7/Exa9_7.sce
new file mode 100755
index 000000000..c6a5aad3f
--- /dev/null
+++ b/1697/CH9/EX9.7/Exa9_7.sce
@@ -0,0 +1,16 @@
+//Exa 9.7
+clc;
+clear;
+close;
+//given data :
+//Part (i)
+D=10;//in Km
+lambda=10000;//in meter
+LP=(4*%pi*D*1000/lambda)^2;//in dB
+disp(LP,"Path loss in dB : ");
+//Part (ii)
+D=10^6;//in Km
+lambda=0.3;//in cm
+LP=(4*%pi*D*1000/(lambda*10^-2))^2;//in dB
+disp(LP,"Path loss in dB : ");
+//Note : Answer in the book is wrong as value putted in the solution is differ from given in question. \ No newline at end of file
diff --git a/1697/CH9/EX9.8/Exa9_8.sce b/1697/CH9/EX9.8/Exa9_8.sce
new file mode 100755
index 000000000..92e453692
--- /dev/null
+++ b/1697/CH9/EX9.8/Exa9_8.sce
@@ -0,0 +1,9 @@
+//Exa 9.8
+clc;
+clear;
+close;
+//given data :
+HT=50;//in meter
+HR=5;//in meter
+d=4.12*(sqrt(HT)+sqrt(HR));//in Km
+disp(d,"Range of LOS system in Km : "); \ No newline at end of file
diff --git a/1697/CH9/EX9.9/Exa9_9.sce b/1697/CH9/EX9.9/Exa9_9.sce
new file mode 100755
index 000000000..ec160c191
--- /dev/null
+++ b/1697/CH9/EX9.9/Exa9_9.sce
@@ -0,0 +1,16 @@
+//Exa 9.9
+clc;
+clear;
+close;
+//given data :
+PT=5;//in KW
+PT=PT*1000;//in W
+D=100;//in Km
+D=D*10^3;//in m
+f=300;//in MHz
+GT=1.64;//Directivity of transmitter
+GR=1.64;//Directivity of receiver
+c=3*10^8;//speed of light in m/s
+lambda=c/(f*10^6);//in meter
+Pr=PT*GT*GR*[lambda/(4*%pi*D)]^2
+disp(Pr,"Maximum power received in Watt:"); \ No newline at end of file