diff options
Diffstat (limited to '1682/CH16/EX16.4/Exa16_4.sce')
-rwxr-xr-x | 1682/CH16/EX16.4/Exa16_4.sce | 72 |
1 files changed, 36 insertions, 36 deletions
diff --git a/1682/CH16/EX16.4/Exa16_4.sce b/1682/CH16/EX16.4/Exa16_4.sce index 549c375bf..4a1322b16 100755 --- a/1682/CH16/EX16.4/Exa16_4.sce +++ b/1682/CH16/EX16.4/Exa16_4.sce @@ -1,36 +1,36 @@ -//Exa 16.4
-clc;
-clear;
-close;
-//given data :
-disp("Given the following LP model :")
-disp("minimize Z = 2*X1 + 3*X2");
-disp("subject to");
-disp("X1+X2 >= 6");
-disp("7*X1+X2 >= 14");
-disp("X1,X2 >= 0");
-disp("The introduction of non-negative constraints X1>=0 and X2>=0 will eliminate the 2nd, 3rd and 4th quadrants of XY plane.");
-disp("Compute the cordinates to plot equations relting to the constraints on the XY plane as shown below : ");
-disp("X1+X2 = 6");
-disp("When X1=0 : X2=6");
-disp("When X2=0 : X1=6");
-X1=0:6;
-X2=(6-X1);
-plot2d(X1,X2);
-disp("Consider the 2nd constraint in the form :");
-disp("7*X1+X2 = 14");
-disp("When X1=0 : X2=14");
-disp("When X2=0 : X1=2");
-X1=0:2;
-X2=(14-7*X1);
-plot2d(X1,X2);
-disp("The Optimum solution will be in any one of the corners A, B and C");
-disp("The objective function value at each of these corner points of the feasible solution space is computed as fllows by substituting its coordinates in the objective function.")
-ZA=2*0+3*14;
-ZB=2*(4/3)+3*(14/3);
-ZC=2*6+3*0;
-disp("ZA=6*0+8*0=0...
- ZB=6*10+8*0=60...
- ZC=6*8+8*2=64);
-disp("Since the type of the objective function is minimization, the solution corresponding to the minimum Z value should be selected as the optimum solution. The Z value is minimum for the corner point C. Hence, the corresponding solution is ");
-disp("X1 = 6 X2 = 0 and Z(Optimum) = 12");
+//Exa 16.4 +clc; +clear; +close; +//given data : +disp("Given the following LP model :") +disp("minimize Z = 2*X1 + 3*X2"); +disp("subject to"); +disp("X1+X2 >= 6"); +disp("7*X1+X2 >= 14"); +disp("X1,X2 >= 0"); +disp("The introduction of non-negative constraints X1>=0 and X2>=0 will eliminate the 2nd, 3rd and 4th quadrants of XY plane."); +disp("Compute the cordinates to plot equations relating to the constraints on the XY plane as shown below : "); +disp("X1+X2 = 6"); +disp("When X1=0 : X2=6"); +disp("When X2=0 : X1=6"); +X1=0:6; +X2=(6-X1); +plot2d(X1,X2); +disp("Consider the 2nd constraint in the form :"); +disp("7*X1+X2 = 14"); +disp("When X1=0 : X2=14"); +disp("When X2=0 : X1=2"); +X1=0:2; +X2=(14-7*X1); +plot2d(X1,X2); +disp("The Optimum solution will be in any one of the corners A, B and C"); +disp("The objective function value at each of these corner points of the feasible solution space is computed as follows by substituting its coordinates in the objective function.") +ZA=2*0+3*14; +ZB=2*(4/3)+3*(14/3); +ZC=2*6+3*0; +disp("ZA=6*0+8*0=0... + ZB=6*10+8*0=60... + ZC=6*8+8*2=64"); +disp("Since the type of the objective function is minimization, the solution corresponding to the minimum Z value should be selected as the optimum solution. The Z value is minimum for the corner point C. Hence, the corresponding solution is "); +disp("X1 = 6 X2 = 0 and Z(Optimum) = 12");
\ No newline at end of file |