summaryrefslogtreecommitdiff
path: root/1535/CH10
diff options
context:
space:
mode:
Diffstat (limited to '1535/CH10')
-rwxr-xr-x1535/CH10/EX10.1/Ch10Ex1.sci13
-rwxr-xr-x1535/CH10/EX10.4/Ch10Ex4.sci15
-rwxr-xr-x1535/CH10/EX10.5/Ch10Ex5.sci11
-rwxr-xr-x1535/CH10/EX10.6/Ch10Ex6.sci13
4 files changed, 52 insertions, 0 deletions
diff --git a/1535/CH10/EX10.1/Ch10Ex1.sci b/1535/CH10/EX10.1/Ch10Ex1.sci
new file mode 100755
index 000000000..d45ba2bb9
--- /dev/null
+++ b/1535/CH10/EX10.1/Ch10Ex1.sci
@@ -0,0 +1,13 @@
+// Scilab Code Ex10.1: Page-222 (2010)
+k = 1.38e-023; // Boltzmann constant, J/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+g1 = 2; // The degeneracy of ground state
+g2 = 8; // The degeneracy of excited state
+delta_E = 10.2; // Energy of excited state above the ground state, eV
+T = 6000; // Temperature of the state, K
+D_ratio = g2/g1; // Ratio of degeneracy of states
+N_ratio = D_ratio*exp(-delta_E/(k*T/e)); // Ratio of occupancy of the excited to the ground state
+printf("\nThe ratio of occupancy of the excited to the ground state at %d K = %4.2e", T, N_ratio);
+
+// Result
+// The ratio of occupancy of the excited to the ground state at 6000 K = 1.10e-008 \ No newline at end of file
diff --git a/1535/CH10/EX10.4/Ch10Ex4.sci b/1535/CH10/EX10.4/Ch10Ex4.sci
new file mode 100755
index 000000000..df6fc323f
--- /dev/null
+++ b/1535/CH10/EX10.4/Ch10Ex4.sci
@@ -0,0 +1,15 @@
+// Scilab Code Ex10.4: Page-223 (2010)
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+N_A = 6.023e+023; // Avogadro's number
+h = 6.626e-034; // Planck's constant, Js
+me = 9.1e-031; // Mass of electron, kg
+rho = 10.5; // Density of silver, g per cm
+m = 108; // Molecular mass of silver, g/mol
+N_D = rho*N_A/(m*1e-006); // Number density of conduction electrons, per metre cube
+E_F = h^2/(8*me)*(3/%pi*N_D)^(2/3);
+printf("\nThe number density of conduction electrons = %4.2e per metre cube", N_D);
+printf("\nThe Fermi energy of silver = %4.2f eV", E_F/e);
+
+// Result
+// The number density of conduction electrons = 5.86e+028 per metre cube
+// The Fermi energy of silver = 5.51 eV \ No newline at end of file
diff --git a/1535/CH10/EX10.5/Ch10Ex5.sci b/1535/CH10/EX10.5/Ch10Ex5.sci
new file mode 100755
index 000000000..50ed6146c
--- /dev/null
+++ b/1535/CH10/EX10.5/Ch10Ex5.sci
@@ -0,0 +1,11 @@
+// Scilab Code Ex10.5: Page-224 (2010)
+N_A = 6.023e+023; // Avogadro's number
+k = 1.38e-023; // Boltzmann constant, J/K
+T = 293; // Temperature of sodium, K
+E_F = 3.24; // Fermi energy of sodium, eV
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+C_v = %pi^2*N_A*k^2*T/(2*E_F*e); // Molar specific heat of sodium, J/mole/K
+printf("\nThe molar specific heat of sodium = %4.2f J/mole/K", C_v);
+
+// Result
+// The molar specific heat of sodium = 0.32 J/mole/K \ No newline at end of file
diff --git a/1535/CH10/EX10.6/Ch10Ex6.sci b/1535/CH10/EX10.6/Ch10Ex6.sci
new file mode 100755
index 000000000..3bd1fd2e2
--- /dev/null
+++ b/1535/CH10/EX10.6/Ch10Ex6.sci
@@ -0,0 +1,13 @@
+// Scilab Code Ex10.6: Page-224 (2010)
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+h = 6.626e-034; // Planck's constant, Js
+m = 9.1e-031; // Mass of the electron, kg
+N_D = 18.1e+028; // Number density of conduction electrons in Al, per metre cube
+E_F = h^2/(8*m)*(3/%pi*N_D)^(2/3); // Fermi energy of aluminium, J
+Em_0 = 3/5*E_F; // Mean energy of the electron at 0K, J
+printf("\nThe Fermi energy of aluminium = %5.2f eV", E_F/e);
+printf("\nThe mean energy of the electron at 0K = %4.2f eV", Em_0/e);
+
+// Result
+// The Fermi energy of aluminium = 11.70 eV
+// The mean energy of the electron at 0K = 7.02 eV