diff options
Diffstat (limited to '1529/CH10')
-rwxr-xr-x | 1529/CH10/EX10.1/10_01.sce | 10 | ||||
-rwxr-xr-x | 1529/CH10/EX10.10/10_10.sce | 21 | ||||
-rwxr-xr-x | 1529/CH10/EX10.12/10_12.sce | 16 | ||||
-rwxr-xr-x | 1529/CH10/EX10.13/10_13.sce | 6 | ||||
-rwxr-xr-x | 1529/CH10/EX10.14/10_14.sce | 6 | ||||
-rwxr-xr-x | 1529/CH10/EX10.15/10_15.sce | 6 | ||||
-rwxr-xr-x | 1529/CH10/EX10.16/10_16.sce | 8 | ||||
-rwxr-xr-x | 1529/CH10/EX10.17/10_17.sce | 6 | ||||
-rwxr-xr-x | 1529/CH10/EX10.18/10_18.sce | 7 | ||||
-rwxr-xr-x | 1529/CH10/EX10.19/10_19.sce | 7 | ||||
-rwxr-xr-x | 1529/CH10/EX10.2/10_02.sce | 9 | ||||
-rwxr-xr-x | 1529/CH10/EX10.20/10_20.sce | 14 | ||||
-rwxr-xr-x | 1529/CH10/EX10.21/10_21.sce | 9 | ||||
-rwxr-xr-x | 1529/CH10/EX10.22/10_22.sce | 10 | ||||
-rwxr-xr-x | 1529/CH10/EX10.23/10_23.sce | 16 | ||||
-rwxr-xr-x | 1529/CH10/EX10.24/10_24.sce | 14 | ||||
-rwxr-xr-x | 1529/CH10/EX10.3/10_03.sce | 17 | ||||
-rwxr-xr-x | 1529/CH10/EX10.4/10_04.sce | 13 | ||||
-rwxr-xr-x | 1529/CH10/EX10.5/10_05.sce | 12 | ||||
-rwxr-xr-x | 1529/CH10/EX10.6/10_06.sce | 10 | ||||
-rwxr-xr-x | 1529/CH10/EX10.7/10_07.sce | 15 | ||||
-rwxr-xr-x | 1529/CH10/EX10.8/10_08.sce | 13 | ||||
-rwxr-xr-x | 1529/CH10/EX10.9/10_09.sce | 16 |
23 files changed, 261 insertions, 0 deletions
diff --git a/1529/CH10/EX10.1/10_01.sce b/1529/CH10/EX10.1/10_01.sce new file mode 100755 index 000000000..49db773bd --- /dev/null +++ b/1529/CH10/EX10.1/10_01.sce @@ -0,0 +1,10 @@ +//Chapter 10, Problem 1, figure 10.5 +clc; +Ia=40*10^-3; //maximum permissible current +I=50; //total circuit current +ra=25; //resistance of instrument +Is=I-Ia; //current flowing in shunt +V=Ia*ra; //voltage +Rs=V/Is; //resistance in shunt +printf("Shunt resistance Rs = %f miliohm\n\n\n",Rs*1000); +printf("A resistance of value 20.02 miliohm needs to be connected in parallel with the instrument.") diff --git a/1529/CH10/EX10.10/10_10.sce b/1529/CH10/EX10.10/10_10.sce new file mode 100755 index 000000000..298084739 --- /dev/null +++ b/1529/CH10/EX10.10/10_10.sce @@ -0,0 +1,21 @@ +//Chapter 10, Problem 10, figure 10.20
+clc;
+tc = 100E-6; // in s/cm
+Vc = 2; // in V/cm
+w = 5; // in cm ( width of one complete cycle for both waveform )
+h1 = 2; // in cm ( peak-to-peak height of the display )
+h2 = 2.5; // in cm ( peak-to-peak height of the display )
+
+//calculation:
+T = w*tc
+f = 1/T
+ptpv1 = h1*Vc
+Vrms1 = ptpv1/(2^0.5)
+ptpv2 = h2*Vc
+Vrms2 = ptpv2/(2^0.5)
+phi = 0.5*360/w
+
+printf("\n\n (a)Frequency, f = %f kHz",f/1000)
+printf("\n\n (b1)r.m.s voltage of 1st waveform = %.2f V",Vrms1)
+printf("\n\n (b2)r.m.s voltage of 2nd waveform = %.2f V",Vrms2)
+printf("\n\n (c)Phase difference = %.0f°",phi)
diff --git a/1529/CH10/EX10.12/10_12.sce b/1529/CH10/EX10.12/10_12.sce new file mode 100755 index 000000000..b2abc7a4d --- /dev/null +++ b/1529/CH10/EX10.12/10_12.sce @@ -0,0 +1,16 @@ +//Chapter 10, Problem 12, figure 10.30
+clc;
+rP1 = 3; // ratio of two powers
+rP2 = 20; // ratio of two powers
+rP3 = 400; // ratio of two powers
+rP4 = 1/20; // ratio of two powers
+//calculation:
+X1 = 10*log10(3)
+X2 = 10*log10(20)
+X3 = 10*log10(400)
+X4 = 10*log10(1/20)
+
+printf("\n\n (a)decibel power ratio for power ratio 3 = %.2f dB ",X1)
+printf("\n\n (b)decibel power ratio for power ratio 20 = %.1f dB ",X2)
+printf("\n\n (c)decibel power ratio for power ratio 400 = %.1f dB ",X3)
+printf("\n\n (d)decibel power ratio for power ratio 1/20 = %.1f dB ",X4)
diff --git a/1529/CH10/EX10.13/10_13.sce b/1529/CH10/EX10.13/10_13.sce new file mode 100755 index 000000000..ab025f1df --- /dev/null +++ b/1529/CH10/EX10.13/10_13.sce @@ -0,0 +1,6 @@ +//Chapter 10, Problem 13
+clc;
+I2=20; //current in amperes
+I1=5; //current in amperes
+d=20*log10(I2/I1); //in decibel
+printf("decibel current ratio = %d dB",d);
diff --git a/1529/CH10/EX10.14/10_14.sce b/1529/CH10/EX10.14/10_14.sce new file mode 100755 index 000000000..0b893c879 --- /dev/null +++ b/1529/CH10/EX10.14/10_14.sce @@ -0,0 +1,6 @@ +//Chapter 10, Problem 14
+clc;
+P1=100; //input power
+P2=6; //ouput power
+d=10*log10(P2/P1); //decibel power ratio
+printf("decibel power loss = %f dB",d);
diff --git a/1529/CH10/EX10.15/10_15.sce b/1529/CH10/EX10.15/10_15.sce new file mode 100755 index 000000000..90cc6e486 --- /dev/null +++ b/1529/CH10/EX10.15/10_15.sce @@ -0,0 +1,6 @@ +//Chapter 10, Problem 15
+clc;
+d=14; //amplifier gain
+P1=8e-3; //input power
+P2=10^(14/10)*P1; //calculating output power using logarithm
+printf("Output power = %f mW",P2*1000);
diff --git a/1529/CH10/EX10.16/10_16.sce b/1529/CH10/EX10.16/10_16.sce new file mode 100755 index 000000000..4e98352d9 --- /dev/null +++ b/1529/CH10/EX10.16/10_16.sce @@ -0,0 +1,8 @@ +//Chapter 10, Problem 16
+clc;
+g1=12; //gain of stage 1
+g2=15; //gain of stage 2
+g3=-8; //gain of stage 3
+P=g1+g2+g3; //Power ratio
+P1=10^(P/10); //calculating overall power gain
+printf("Overall power gain (P2/P1) = %f ",P1);
diff --git a/1529/CH10/EX10.17/10_17.sce b/1529/CH10/EX10.17/10_17.sce new file mode 100755 index 000000000..3e740b3f2 --- /dev/null +++ b/1529/CH10/EX10.17/10_17.sce @@ -0,0 +1,6 @@ +//Chapter 10, Problem 17
+clc;
+V2=4; //output voltage
+V=27; //voltage gain in decibels
+V1=V2/(10^(V/20)); //calculating input voltage using logarithm
+printf("Input voltage = %f V",V1);
diff --git a/1529/CH10/EX10.18/10_18.sce b/1529/CH10/EX10.18/10_18.sce new file mode 100755 index 000000000..fcf455af6 --- /dev/null +++ b/1529/CH10/EX10.18/10_18.sce @@ -0,0 +1,7 @@ +//Chapter 10, Problem 18
+clc;
+BC=100; //resistance between point B and C
+DA=400; //resistance between point D and A
+CD=10; //resistance between point C and D
+Rx=BC*DA/CD; //calculating unknown resistance using balance equation
+printf("unknown resistance = %f K ohms",Rx/1000);
diff --git a/1529/CH10/EX10.19/10_19.sce b/1529/CH10/EX10.19/10_19.sce new file mode 100755 index 000000000..07cc0fffc --- /dev/null +++ b/1529/CH10/EX10.19/10_19.sce @@ -0,0 +1,7 @@ +//Chapter 10, Problem 19
+clc;
+E1=1.0186; //emf of standard cell
+I1=400e-3; //balance length when using standard cell
+I2=650e-3; //balance length when using dry cell
+E2=E1*(I2/I1); //calculating emf of dry cell
+printf("e.m.f of dry cell = %f V",E2);
diff --git a/1529/CH10/EX10.2/10_02.sce b/1529/CH10/EX10.2/10_02.sce new file mode 100755 index 000000000..99149f9af --- /dev/null +++ b/1529/CH10/EX10.2/10_02.sce @@ -0,0 +1,9 @@ +//Chapter 10, Problem 2, figure 10.6
+clc;
+I=0.008; //total circuit current
+ra=10; //resistance of instrument
+V=100; //total p.d
+Va=I*ra; //calculating voltage across moving coil instrument
+Rm=(V-(I*ra))/I; //calculating value of multiplier
+printf("Multiplier Rm = %f K.ohm\n\n\n",Rm/1000);
+printf("A resistance of value 12.49 k ohm needs to be connected in series with the instrument.");
diff --git a/1529/CH10/EX10.20/10_20.sce b/1529/CH10/EX10.20/10_20.sce new file mode 100755 index 000000000..2d6ba7e95 --- /dev/null +++ b/1529/CH10/EX10.20/10_20.sce @@ -0,0 +1,14 @@ +//Chapter 10, Problem 20, figure 10.35
+clc;
+//resistance of coil
+R1=400;
+R2=400;
+R3=5000;
+//value of capacitance
+C=7.5e-6;
+//calculating the value of inductance
+L=R1*R2*C;
+//calculating the value unknown resistance
+r=(R1*R2)/R3;
+printf("Inductance = %f H\n\n\n",L);
+printf("Resistance = %d ohm",r);
diff --git a/1529/CH10/EX10.21/10_21.sce b/1529/CH10/EX10.21/10_21.sce new file mode 100755 index 000000000..f638a941c --- /dev/null +++ b/1529/CH10/EX10.21/10_21.sce @@ -0,0 +1,9 @@ +//Chapter 10, Problem 20, figure 10.35
+clc;
+fr=400e3; //resonant frequency
+Qf=100; //Q factor
+C=400e-12; //capacitance
+L=((2*%pi*fr)^2*C)^-1; //calculating inductance
+R=2*%pi*fr*L/Qf; //calculating resistance
+printf("(a) Inductance = %f mH\n\n\n",L*1000);
+printf("(b) Resistance of inductor = %f ohm",R);
diff --git a/1529/CH10/EX10.22/10_22.sce b/1529/CH10/EX10.22/10_22.sce new file mode 100755 index 000000000..b020ee60c --- /dev/null +++ b/1529/CH10/EX10.22/10_22.sce @@ -0,0 +1,10 @@ +//Chapter 10, Problem 22
+clc
+I=2.5e-3 //current in amperes
+R=5000 //resistance in ohm
+e1=0.4 //error tolerance
+e2=0.5 //error tolerance
+V=I*R
+emax=e1+e2
+V1=(emax/100)*V
+printf("V = %.1f V\n accuracy = %.2f V\n",V,V1)
diff --git a/1529/CH10/EX10.23/10_23.sce b/1529/CH10/EX10.23/10_23.sce new file mode 100755 index 000000000..f7583f705 --- /dev/null +++ b/1529/CH10/EX10.23/10_23.sce @@ -0,0 +1,16 @@ +//Chapter 10, Problem 23
+clc
+V=36.5 //voltage
+V1=50 //max voltage of voltameter
+I1=10 //max current of ammeter
+I=6.25 //current in amperes
+ev=2
+R=V/I
+ev1=(2/100)*V1
+ev2=ev1*100/V
+ei1=(ev/100)*I1
+ei2=ei1*100/I
+eiv=ev2+ei2
+r=eiv*R/100
+printf("Maximum relative error = %.2f percent or %.2f ohm\n\n",eiv,r)
+printf("Resistance = %.2f ohm",R)
diff --git a/1529/CH10/EX10.24/10_24.sce b/1529/CH10/EX10.24/10_24.sce new file mode 100755 index 000000000..fad65c92c --- /dev/null +++ b/1529/CH10/EX10.24/10_24.sce @@ -0,0 +1,14 @@ +//Chapter 10, Problem 24
+clc
+R2=100 //resistamce in ohm
+R3=432.5 //resistamce in ohm
+R1=1000 //resistamce in ohm
+e1=1 //error of R1 in percent
+e2=0.5 //error of R2 in percent
+e3=0.2 //error of R3 in percent
+Rx=R2*R3/R1
+et=e1+e2+e3
+et1=et*Rx/100
+printf("Unknown resistance = %.2f ohm \n\n",Rx)
+printf("Maximum relative error = %.1f percent\n",et)
+printf("Maximum relative erroe in ohm = %.2f ohm",et1)
diff --git a/1529/CH10/EX10.3/10_03.sce b/1529/CH10/EX10.3/10_03.sce new file mode 100755 index 000000000..6975d223c --- /dev/null +++ b/1529/CH10/EX10.3/10_03.sce @@ -0,0 +1,17 @@ +//Chapter 10, Problem 3, figure 10.9
+clc;
+S=10000; //voltmeter sensitivity
+V=100; //total voltage
+fsd=200; //full scale deflection
+R1=250; //load 1
+R2=2e6; //load 2
+Rv=S*fsd; //resistance of voltmeter,
+Iv=V/Rv; //current flowing in voltmeter
+P=V*Iv; //calculating power dissipated by voltmeter
+Ir1=V/R1; //calculating current in load 1
+Ir2=V/R2; ////calculating current in load 2
+P1=V*Ir1; //calculating Power dissipated in load 1
+P2=V*Ir2; ////calculating Power dissipated in load 2
+printf("Power dissipated by voltmeter = %f mW\n\n\n",P*1000);
+printf("(a) Power dissipated in load 250 ohm = %f W\n\n\n",P1);
+printf("(b) Power dissipated in load 2 M.ohm = %f mW\n\n\n",P2*1000);
diff --git a/1529/CH10/EX10.4/10_04.sce b/1529/CH10/EX10.4/10_04.sce new file mode 100755 index 000000000..c8479d0df --- /dev/null +++ b/1529/CH10/EX10.4/10_04.sce @@ -0,0 +1,13 @@ +//Chapter 10, Problem 4, figure 10.10
+clc;
+R=500; //load resistance
+V=10; //supply voltage
+ra=50; //ammeter resistance
+Ie=V/R; //calculating expected current
+Ia=V/(R+ra); //calculating actual current
+P=Ia^2*ra; //calculating power dissipated in the ammeter
+Pl=Ia^2*R; //calculating power dissipated in load resistor
+printf("(a) Expected ammeter reading = %f mA\n\n\n",Ie*1000);
+printf("(b) Actual ammeter reading = %f mA\n\n\n",Ia*1000);
+printf("(c) Power dissipated in the ammeter = %f mW\n\n\n",P*1000);
+printf("(d) Power dissipated in the load resistor = %f mW\n\n\n",Pl*1000);
diff --git a/1529/CH10/EX10.5/10_05.sce b/1529/CH10/EX10.5/10_05.sce new file mode 100755 index 000000000..656de7e43 --- /dev/null +++ b/1529/CH10/EX10.5/10_05.sce @@ -0,0 +1,12 @@ +//Chapter 10, Problem 5, figure 10.11, figure 10.12
+clc;
+V=100; //f.s.d of voltmeter
+S=1600; //sensitivity
+R1=40e3; //resistor 1
+R2=60e3; //resistor 2
+V1=(R1/(R1+R2))*V; //voltage between A and B
+R=V*S; //resistance of voltmeter
+R3=((R1*R)/(R1+R)); //equivalent resistance of parallel network
+V2=(R3/(R2+R3))*V; //voltage indicated by voltmeter
+printf("(a) Value of voltage V1 with the voltmeter not connected = %f V\n\n\n",V1);
+printf("(b) Voltage between A and B = %f V\n\n\n",V2);
diff --git a/1529/CH10/EX10.6/10_06.sce b/1529/CH10/EX10.6/10_06.sce new file mode 100755 index 000000000..b2914ffa2 --- /dev/null +++ b/1529/CH10/EX10.6/10_06.sce @@ -0,0 +1,10 @@ +//Chapter 10, Problem 6, figure 10.13
+clc;
+I=20; //current flows through a load
+R=2; //load
+r=0.01; //wattmeter coil resistance
+P=I^2*R; //power dissipated in the load
+Rt=R+r; //total resistance
+P1=I^2*Rt; //wattmeter reading
+printf("(a) Power dissipated in the load = %f W\n\n\n",P);
+printf("(b) Wattmeter reading = %f W",P1);
diff --git a/1529/CH10/EX10.7/10_07.sce b/1529/CH10/EX10.7/10_07.sce new file mode 100755 index 000000000..7e83c4149 --- /dev/null +++ b/1529/CH10/EX10.7/10_07.sce @@ -0,0 +1,15 @@ +//Chapter 10, Problem 7, figure 10.17
+clc;
+tc = 100e-6; // in s/cm
+Vc = 20; // in V/cm
+w = 5.2; // in cm ( width of one complete cycle )
+h = 3.6; // in cm ( peak-to-peak height of the display )
+
+//calculation:
+T = w*tc
+f = 1/T
+ptpv = h*Vc
+
+printf("\n (a)The periodic time, T = %.2f ms\n", T*10^3)
+printf("\n (b)Frequency, f = %.2f kHz\n",f/1000)
+printf("\n (c)The peak-to-peak voltage = %.0f V\n",ptpv)
diff --git a/1529/CH10/EX10.8/10_08.sce b/1529/CH10/EX10.8/10_08.sce new file mode 100755 index 000000000..27d3b0def --- /dev/null +++ b/1529/CH10/EX10.8/10_08.sce @@ -0,0 +1,13 @@ +//Chapter 10, Problem 8, figure 10.18
+clc;
+tc = 50e-3; // in s/cm
+Vc = 0.2; // in V/cm
+w = 3.5; // in cm ( width of one complete cycle )
+h = 3.4; // in cm ( peak-to-peak height of the display )
+//calculation:
+T = w*tc
+f = 1/T
+ptpv = h*Vc
+printf("\n\n (a)The periodic time, T = %.2f ms",T*10^3)
+printf("\n\n (b)Frequency, f = %.2f Hz",f)
+printf("\n\n (c)The peak-to-peak voltage = %.2f V",ptpv)
diff --git a/1529/CH10/EX10.9/10_09.sce b/1529/CH10/EX10.9/10_09.sce new file mode 100755 index 000000000..d994b79f4 --- /dev/null +++ b/1529/CH10/EX10.9/10_09.sce @@ -0,0 +1,16 @@ +//Chapter 10, Problem 9, figure 10.19
+clc;
+tc = 500e-6; // in s/cm
+Vc = 5; // in V/cm
+w = 4; // in cm ( width of one complete cycle )
+h = 5; // in cm ( peak-to-peak height of the display )
+//calculation:
+T = w*tc
+f = 1/T
+ptpv = h*Vc
+Amp = ptpv/2
+Vrms = Amp/(2^0.5)
+printf("\n\n (a)Frequency, f = %.0f Hz",f)
+printf("\n\n (b)the peak-to-peak voltage = %.0f V",ptpv)
+printf("\n\n (c)Amplitude = %.1f V",Amp)
+printf("\n\n (d)r.m.s voltage = %.2f V",Vrms)
|