summaryrefslogtreecommitdiff
path: root/1445/CH7/EX7.23/ch7_ex_23.sce
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH7/EX7.23/ch7_ex_23.sce')
-rw-r--r--1445/CH7/EX7.23/ch7_ex_23.sce60
1 files changed, 60 insertions, 0 deletions
diff --git a/1445/CH7/EX7.23/ch7_ex_23.sce b/1445/CH7/EX7.23/ch7_ex_23.sce
new file mode 100644
index 000000000..39a725cd2
--- /dev/null
+++ b/1445/CH7/EX7.23/ch7_ex_23.sce
@@ -0,0 +1,60 @@
+//CHAPTER 7- SINGLE PHASE TRANSFORMER
+//Example 23
+
+disp("CHAPTER 7");
+disp("EXAMPLE 23");
+
+//VARIABLE INITIALIZATION
+va=33000;
+v1=2200; //primary voltage in Volts
+v2=220; //secondary voltage in Volts
+f=50;
+R1=2.4;
+X1=6;
+R2=0.03;
+X2=0.07;
+
+//SOLUTION
+//
+R_dash_2=R2*(v1/v2)^2;
+R_e1=R1+R_dash_2;
+X_dash_2=X2*(v1/v2)^2;
+X_e1=X1+X_dash_2;
+//
+R_dash_1=R1*(v2/v1)^2;
+R_e2=R2+R_dash_1;
+X_dash_1=X1*(v2/v1)^2;
+X_e2=X2+X_dash_1;
+
+disp("SOLUTION (a)");
+disp(sprintf("The primary resistance referred to secondary %f Ω",R_dash_1));
+disp(sprintf("The primary leakage reactance referred to secondary %f Ω",X_dash_1));
+//
+disp("SOLUTION (b)");
+disp(sprintf("The secondary resistance referred to secondary %f Ω",R_dash_2));
+disp(sprintf("The secondary leakage reactance referred to secondary %f Ω",X_dash_2));
+//
+disp("SOLUTION (C(i))");
+disp(sprintf("The equivalent resistance referred to primary %f Ω",R_e1));
+disp(sprintf("The equivalent leakage reactance referred to primary %f Ω",X_e1));
+//
+disp("SOLUTION (C(ii))");
+disp(sprintf("The equivalent resistance referred to secondaryy %f Ω",R_e2));
+disp(sprintf("The equivalent leakage reactance referred to secondary %f Ω",X_e2));
+//
+I1=va/v1;
+I2=va/v2;
+oLoss=I2^2*R_e2;
+disp("SOLUTION (d)");
+disp(sprintf("The ohmic loss at full load %f W",oLoss));
+//
+Z_e1=sqrt(R_e1^2+X_e1^2);
+//voltage to be applied on HV side
+V=160*(v2/v1)*Z_e1;
+P=(160*(v2/v1))^2*R_e1;
+disp("SOLUTION (e)");
+disp(sprintf("The voltage to be applied on HV side is %f V",V));
+disp(sprintf("The power input is %f W",P));
+disp(" ");
+//
+//END