summaryrefslogtreecommitdiff
path: root/1445/CH2/EX2.27/Ex2_27.sce
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH2/EX2.27/Ex2_27.sce')
-rw-r--r--1445/CH2/EX2.27/Ex2_27.sce13
1 files changed, 4 insertions, 9 deletions
diff --git a/1445/CH2/EX2.27/Ex2_27.sce b/1445/CH2/EX2.27/Ex2_27.sce
index a88d01676..a8113eea2 100644
--- a/1445/CH2/EX2.27/Ex2_27.sce
+++ b/1445/CH2/EX2.27/Ex2_27.sce
@@ -1,15 +1,10 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 27 // read it as example 26 in the book on page 2.79
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 27");
-// Given
-//Voltage across the circuit
-//v=250.sin (314.t-10)
-//current is given by
-//i=10.sin(314.t+50)
-//
//VARIABLE INITIALIZATION
V=250; //Amplitude in Volts
w=314; //angular spped
@@ -41,13 +36,13 @@ angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
[mag,angle]=rect2pol(real(Z),imag(Z));
disp("SOLUTION (a)");
-disp(sprintf("The impedance is %d < %3d Deg", mag,angle));//text book answer is -60 deg
+disp(sprintf("The impedance is %f < %3f Deg", mag,angle));
//disp(" ");
//power factor=cos(angle)
pf=cos(-1*angle*%pi/180); //convert to radians and change sign
-disp(sprintf("The power factor is %2.1f", pf));
+disp(sprintf("The power factor is %f", pf));
//Z=R-jXc by comparing real and imag paarts we get
-disp(sprintf("The resistance is %3.1fΩ and Reactance is %4.2fΩ", real(Z), imag(Z)));
+disp(sprintf("The resistance is %fΩ and Reactance is %3fΩ", real(Z), imag(Z)));
disp(" ");
//
//END