summaryrefslogtreecommitdiff
path: root/1445/CH2/EX2.18/Ex2_18.sce
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH2/EX2.18/Ex2_18.sce')
-rw-r--r--1445/CH2/EX2.18/Ex2_18.sce21
1 files changed, 10 insertions, 11 deletions
diff --git a/1445/CH2/EX2.18/Ex2_18.sce b/1445/CH2/EX2.18/Ex2_18.sce
index 3f09f083a..b29c61a43 100644
--- a/1445/CH2/EX2.18/Ex2_18.sce
+++ b/1445/CH2/EX2.18/Ex2_18.sce
@@ -1,15 +1,16 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 18
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 18");
//VARIABLE INITIALIZATION
-r=10; //in Ohms
-v=200; //in Volts
-f=50; //in Hertz
-I=10; //in Amperes
-rc=2; //resistance of coil in Ohms
+r=10; //in Ohms
+v=200; //in Volts
+f=50; //in Hertz
+I=10; //in Amperes
+rc=2; //resistance of coil in Ohms
//SOLUTION
@@ -17,21 +18,19 @@ rc=2; //resistance of coil in Ohms
z=v/I;
xl=sqrt((z^2)-((r+rc)^2));
L=xl/(2*%pi*f);
-//disp(sprintf("(i) The Xl of the coil is %3.1f ",xl));
-disp(sprintf("(i) The inductance of the coil is %3.1f H",L*1000));//converting to milli henry
+disp(sprintf("(i) The inductance of the coil is %f H",L));
//solution (ii)
pf=(r+rc)/z;
-disp(sprintf("(ii) The power factor is %3.1f",pf));
+disp(sprintf("(ii) The power factor is %f",pf));
//solution (iii)
vl=I*(rc+(%i*xl));
-//function to convert from rectangular form to polar form
-function [mag,angle]=rect2pol(x,y);
+function [mag,angle]=rect2pol(x,y);//function 'rect2pol()' converts voltage in rectangular form to polar form
mag=sqrt((x^2)+(y^2));
angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
[vl,angle_vl]=rect2pol(real(vl),imag(vl));
-disp(sprintf("(iii) The voltage across the coil is %7.3f V, %5.2f degrees",vl,angle_vl));
+disp(sprintf("(iii) The voltage across the coil is %f V, %f degrees",vl,angle_vl));
//END