summaryrefslogtreecommitdiff
path: root/1445/CH1
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH1')
-rw-r--r--1445/CH1/EX1.1/Ex1_1.sce15
-rw-r--r--1445/CH1/EX1.10/Ex1_10.sce21
-rw-r--r--1445/CH1/EX1.11/Ex1_11.sce25
-rw-r--r--1445/CH1/EX1.12/Ex1_12.sce27
-rw-r--r--1445/CH1/EX1.13/Ex1_13.sce26
-rw-r--r--1445/CH1/EX1.14/Ex1_14.sce30
-rw-r--r--1445/CH1/EX1.15/Ex1_15.sce26
-rw-r--r--1445/CH1/EX1.16/Ex1_16.sce28
-rw-r--r--1445/CH1/EX1.17/Ex1_17.sce36
-rw-r--r--1445/CH1/EX1.18/Ex1_18.sce28
-rw-r--r--1445/CH1/EX1.19/Ex1_19.sce34
-rw-r--r--1445/CH1/EX1.2/Ex1_2.sce34
-rw-r--r--1445/CH1/EX1.20/Ex1_20.sce32
-rw-r--r--1445/CH1/EX1.21/Ex1_21.sce35
-rw-r--r--1445/CH1/EX1.22/Ex1_22.sce30
-rw-r--r--1445/CH1/EX1.23/Ex1_23.sce27
-rw-r--r--1445/CH1/EX1.24/Ex1_24.sce34
-rw-r--r--1445/CH1/EX1.25/Ex1_25.sce22
-rw-r--r--1445/CH1/EX1.26/Ex1_26.sce19
-rw-r--r--1445/CH1/EX1.27/Ex1_27.sce21
-rw-r--r--1445/CH1/EX1.28/Ex1_28.sce20
-rw-r--r--1445/CH1/EX1.29/Ex1_29.sce25
-rw-r--r--1445/CH1/EX1.3/Ex1_3.sce38
-rw-r--r--1445/CH1/EX1.30/Ex1_30.sce42
-rw-r--r--1445/CH1/EX1.31/Ex1_31.sce38
-rw-r--r--1445/CH1/EX1.32/Ex1_32.sce30
-rw-r--r--1445/CH1/EX1.33/Ex1_33.sce36
-rw-r--r--1445/CH1/EX1.34/Ex1_34.sce51
-rw-r--r--1445/CH1/EX1.35/Ex1_35.sce27
-rw-r--r--1445/CH1/EX1.36/Ex1_36.sce30
-rw-r--r--1445/CH1/EX1.37/Ex1_37.sce54
-rw-r--r--1445/CH1/EX1.38/Ex1_38.sce37
-rw-r--r--1445/CH1/EX1.39/Ex1_39.sce21
-rw-r--r--1445/CH1/EX1.4/Ex1_4.sce41
-rw-r--r--1445/CH1/EX1.40/Ex1_40.sce33
-rw-r--r--1445/CH1/EX1.41/Ex1_41.sce30
-rw-r--r--1445/CH1/EX1.42/Ex1_42.sce40
-rw-r--r--1445/CH1/EX1.43/Ex1_43.sce25
-rw-r--r--1445/CH1/EX1.44/Ex1_44.sce15
-rw-r--r--1445/CH1/EX1.45/Ex1_45.sce15
-rw-r--r--1445/CH1/EX1.46/Ex1_46.sce26
-rw-r--r--1445/CH1/EX1.47/Ex1_47.sce32
-rw-r--r--1445/CH1/EX1.48/Ex1_48.sce32
-rw-r--r--1445/CH1/EX1.49/Ex1_49.sce38
-rw-r--r--1445/CH1/EX1.5/Ex1_5.sce39
-rw-r--r--1445/CH1/EX1.50/Ex1_50.sce21
-rw-r--r--1445/CH1/EX1.51/Ex1_51.sce23
-rw-r--r--1445/CH1/EX1.52/Ex1_52.sce46
-rw-r--r--1445/CH1/EX1.53/Ex1_53.sce26
-rw-r--r--1445/CH1/EX1.54/Ex1_54.sce29
-rw-r--r--1445/CH1/EX1.55/Ex1_55.sce22
-rw-r--r--1445/CH1/EX1.56/Ex1_56.sce21
-rw-r--r--1445/CH1/EX1.57/Ex1_57.sce33
-rw-r--r--1445/CH1/EX1.58/Ex1_58.sce35
-rw-r--r--1445/CH1/EX1.59/Ex1_59.sce23
-rw-r--r--1445/CH1/EX1.6/Ex1_6.sce27
-rw-r--r--1445/CH1/EX1.7/Ex1_7.sce43
-rw-r--r--1445/CH1/EX1.8/Ex1_8.sce26
-rw-r--r--1445/CH1/EX1.9/Ex1_9.sce32
59 files changed, 1772 insertions, 0 deletions
diff --git a/1445/CH1/EX1.1/Ex1_1.sce b/1445/CH1/EX1.1/Ex1_1.sce
new file mode 100644
index 000000000..35c637d9c
--- /dev/null
+++ b/1445/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,15 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 1
+
+disp("CHAPTER 1");
+disp("EXAMPLE 1");
+
+//VARIABLE INITIALIZATION
+b=14; //number of branches
+n=8; //number of nodes
+
+//SOLUTION
+m=b-n+1; //number of loop equations
+disp(sprintf("The total number of independent loop equations are %d",m));
+
+//END
diff --git a/1445/CH1/EX1.10/Ex1_10.sce b/1445/CH1/EX1.10/Ex1_10.sce
new file mode 100644
index 000000000..4bd8f0826
--- /dev/null
+++ b/1445/CH1/EX1.10/Ex1_10.sce
@@ -0,0 +1,21 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 10
+
+disp("CHAPTER 1");
+disp("EXAMPLE 10");
+
+//VARIABLE INITIALIZATION
+v=10; //voltage source in Volts
+I=5; //current source in Amperes
+r1=2; //in Ohms
+r2=2; //in Ohms
+r3=4; //in Ohms
+
+//SOLUTION
+res=I+(v/r1);
+v1=res/((1/r1)+(1/r2)+(1/r3));
+I1=v1/r3;
+disp(sprintf("By Nodal analysis, the current through resistor R3 is %d A",I1));
+
+//END
+
diff --git a/1445/CH1/EX1.11/Ex1_11.sce b/1445/CH1/EX1.11/Ex1_11.sce
new file mode 100644
index 000000000..f78a7b4a2
--- /dev/null
+++ b/1445/CH1/EX1.11/Ex1_11.sce
@@ -0,0 +1,25 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 11
+
+disp("CHAPTER 1");
+disp("EXAMPLE 11");
+
+//VARIABLE INITIALIZATION
+I3=-5; //direction of I3 is opposite to the current which flows from the current source
+
+//SOLUTION
+
+//using mesh analysis, the following equations are obtained
+//(4)I1+(-2)I2=10...........eq (1)
+//(-2)I1+(6)I2=-20..........eq (2)
+//solving the two equations using matrix method
+A=[4 -2; -2 6];
+b=[10;-20];
+x=inv(A)*b;
+I1=x(1,:); //to access 1st element of 2X1 matrix
+I2=x(2,:); //to access 2nd element of 2X1 matrix
+I=I2-I3;
+disp(sprintf("By mesh analysis, the current through resistor R3 is %d A",I));
+
+//END
+
diff --git a/1445/CH1/EX1.12/Ex1_12.sce b/1445/CH1/EX1.12/Ex1_12.sce
new file mode 100644
index 000000000..6ca51aa27
--- /dev/null
+++ b/1445/CH1/EX1.12/Ex1_12.sce
@@ -0,0 +1,27 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 12
+
+disp("CHAPTER 1");
+disp("EXAMPLE 12");
+
+//VARIABLE INITIALIZATION
+v=10; //voltage source in Volts
+I=5; //current source in Amperes
+r1=2; //in Ohms
+r2=2; //in Ohms
+r3=4; //in Ohms
+
+//SOLUTION
+
+//deactivating current source
+v1=(v/r1)/((1/r1)+(1/r2)+(1/r3)); //using nodal analysis
+I1=v1/r3;
+
+//deactivating voltage source
+v2=I/((1/r1)+(1/r2)+(1/r3)); //using nodal analysis
+I2=v2/r3;
+I_tot=I1+I2; //applying Superposition Theorem (I1 and I2 are in same direction)
+
+disp(sprintf("By Superposition Theorem, the current through resistor R3 is %d A",I_tot));
+
+//END
diff --git a/1445/CH1/EX1.13/Ex1_13.sce b/1445/CH1/EX1.13/Ex1_13.sce
new file mode 100644
index 000000000..abd93a4fc
--- /dev/null
+++ b/1445/CH1/EX1.13/Ex1_13.sce
@@ -0,0 +1,26 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 13
+
+disp("CHAPTER 1");
+disp("EXAMPLE 13");
+
+//VARIABLE INITIALIZATION
+v=10; //voltage source in Volts
+I=5; //current source in Amperes
+r1=2; //in Ohms
+r2=2; //in Ohms
+r3=4; //in Ohms
+
+//SOLUTION
+//solving by nodal analysis
+res=I+(v/r1); //'res' is used to make the calculation easy
+vth=res/((1/r1)+(1/r2)); //Thevenin voltage
+rth=(r1*r2)/(r1+r2); //Thevenin resistance
+Ith=vth/(rth+r3); //Thevenin current
+disp(sprintf("By Thevenin Theorem, the current through resistor R3 is %d A",Ith));
+
+//END
+
+
+
+
diff --git a/1445/CH1/EX1.14/Ex1_14.sce b/1445/CH1/EX1.14/Ex1_14.sce
new file mode 100644
index 000000000..dc2c6f076
--- /dev/null
+++ b/1445/CH1/EX1.14/Ex1_14.sce
@@ -0,0 +1,30 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 14
+
+disp("CHAPTER 1");
+disp("EXAMPLE 14");
+
+//VARIABLE INITIALIZATION
+v=10; //voltage source in Volts
+I3=-5; //current source in Amperes
+r1=2; //in Ohms
+r2=2; //in Ohms
+r3=4; //in Ohms
+
+//SOLUTION
+//by loop analysis
+//(1)I1+(-1)I2=0.........eq (1)
+//(4)I1+(-2)I2=10........eq (2)
+//solving the equations by matrix method
+A=[1 -1;4 -2];
+b=[0;10];
+x=inv(A)*b;
+I1=x(1,:); //to access 1st element of 2X1 matrix
+I2=x(2,:); //to access 2nd element of 2X1 matrix
+In=I2-I3;
+rn=(r1*r2)/(r1+r2);
+I=(rn*In)/(rn+r3);
+disp(sprintf("By Norton Theorem, the current through resistor R3 is %d A",I));
+
+//END
+
diff --git a/1445/CH1/EX1.15/Ex1_15.sce b/1445/CH1/EX1.15/Ex1_15.sce
new file mode 100644
index 000000000..ec612db54
--- /dev/null
+++ b/1445/CH1/EX1.15/Ex1_15.sce
@@ -0,0 +1,26 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 15
+
+disp("CHAPTER 1");
+disp("EXAMPLE 15");
+
+//VARIABLE INITIALIZATION
+v=7; //voltage source in Volts
+I=7; //current source in Amperes
+r3=1; //in Ohms
+
+//SOLUTION
+//(1)I1+(-4)I2+(4)I3=7............eq (1)
+//(-1)I1+(6)I2+(-3)I3=0...........eq (2)
+//(1)I1+(0)I2+(-1)I3=7............eq (3)
+//solving the equations by matrix method
+A=[1 -4 4;-1 6 -3;1 0 -1];
+b=[7;0;7];
+x=inv(A)*b;
+I1=x(1,:); //to access the 1st element of 3X1 matrix
+I2=x(2,:); //to access the 2nd element of 3X1 matrix
+I3=x(3,:); //to access the 3rd element of 3X1 matrix
+vx=-(I3*r3);
+disp(sprintf("By Mesh analysis, the value of Vx is %d V",vx));
+
+//END
diff --git a/1445/CH1/EX1.16/Ex1_16.sce b/1445/CH1/EX1.16/Ex1_16.sce
new file mode 100644
index 000000000..ce11db243
--- /dev/null
+++ b/1445/CH1/EX1.16/Ex1_16.sce
@@ -0,0 +1,28 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 16
+
+disp("CHAPTER 1");
+disp("EXAMPLE 16");
+
+//VARIABLE INITIALIZATION
+v=7; //voltage source in Volts
+I=7; //current source in Amperes
+r1=1; //in Ohms
+r2=2; //in Ohms
+r3=1; //in Ohms
+r4=2; //in Ohms
+r5=3; //in Ohms
+
+//SOLUTION
+//(4)vb+(-1)vc=0........eq (1)
+//(-2)vb+(11)vc=21......eq (2)
+//solving the equations by matrix method
+A=[4 -1;-2 11];
+b=[0;21];
+x=inv(A)*b;
+vb=x(1,:); //to access the 1st element of 2X1 matrix
+vc=x(2,:); //to access the 2nd element of 2X1 matrix
+vx=-vc;
+disp(sprintf("By Nodal analysis, the value of Vx is %d V",vx));
+
+//END
diff --git a/1445/CH1/EX1.17/Ex1_17.sce b/1445/CH1/EX1.17/Ex1_17.sce
new file mode 100644
index 000000000..46d6a28bf
--- /dev/null
+++ b/1445/CH1/EX1.17/Ex1_17.sce
@@ -0,0 +1,36 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 17
+
+disp("CHAPTER 1");
+disp("EXAMPLE 17");
+
+//VARIABLE INITIALIZATION
+v=7; //voltage source in Volts
+I=7; //current source in Amperes
+r1=1; //in Ohms
+r2=2; //in Ohms
+r3=1; //in Ohms
+r4=2; //in Ohms
+r5=3; //in Ohms
+
+//SOLUTION
+
+//deactivating the current source
+res=(v/4)+(v/2);
+vc=res/((1/4)+(1/r1)+(1/r2));
+vx1=-vc;
+
+//deactivating voltage source
+//(4)va+(-1)vb=-21........eq (1)
+//(2)va+(-11)vb=0.........eq (2)
+//solving the equations by matrix method
+A=[4 -1;2 -11];
+b=[-21;0];
+x=inv(A)*b;
+va=x(1,:); //to access 1st element of 2X1 matrix
+vb=x(2,:); //to access 2nd element of 2X1 matrix
+vx2=-vb;
+vx=vx1+vx2;
+disp(sprintf("By Superposition Theorem, the value of Vx is %d V",vx));
+
+//END
diff --git a/1445/CH1/EX1.18/Ex1_18.sce b/1445/CH1/EX1.18/Ex1_18.sce
new file mode 100644
index 000000000..3dec1c69c
--- /dev/null
+++ b/1445/CH1/EX1.18/Ex1_18.sce
@@ -0,0 +1,28 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 18
+
+disp("CHAPTER 1");
+disp("EXAMPLE 18");
+
+//VARIABLE INITIALIZATION
+v=7; //voltage source in Volts
+I=7; //current source in Amperes
+r1=1; //in Ohms
+r2=2; //in Ohms
+r3=1; //in Ohms
+r4=2; //in Ohms
+r5=3; //in Ohms
+
+//SOLUTION
+//solving by mesh analysis
+I2=0; //since mesh 2 is open
+I1=I-I2;
+I3=I1/6; //from the equation of mesh 3
+vth=-(r2*I3)+v; //Thevenin voltage
+r=r1+r5; //series combination of resistors
+rth=(r*r4)/(r+r4); //parallel combination of resistors (Thevenin resistance)
+I=vth/(rth+r3); //Thevenin current
+vx=-I*r3;
+disp(sprintf("By Thevenin Theorem, the value of Vx is %d V",vx));
+
+//END
diff --git a/1445/CH1/EX1.19/Ex1_19.sce b/1445/CH1/EX1.19/Ex1_19.sce
new file mode 100644
index 000000000..990af1202
--- /dev/null
+++ b/1445/CH1/EX1.19/Ex1_19.sce
@@ -0,0 +1,34 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 19
+
+disp("CHAPTER 1");
+disp("EXAMPLE 19");
+
+//VARIABLE INITIALIZATION
+v=7; //voltage source in Volts
+I=7; //current source in Amperes
+r1=1; //in Ohms
+r2=2; //in Ohms
+r3=1; //in Ohms
+r4=2; //in Ohms
+r5=3; //in Ohms
+
+//SOLUTION
+//by using mesh analysis, the following equations are obtained
+//(1)I1+(-4)I2+(3)In=7.......eq (1)
+//(-1)I1+(6)I1+(-3)In=0......eq (2)
+//(0)I1+(1)I2+(-1)In=0.......eq (3)
+//solving the equations by matrix method
+A=[1 -4 3;-1 6 -3;0 1 -1];
+b=[7;0;0];
+x=inv(A)*b;
+I1=x(1,:); //to access the 1st element of 3X1 matrix
+I2=x(2,:); //to access the 2nd element of 3X1 matrix
+IN=x(3,:); //to access the 3rd element of 3X1 matrix; IN is Norton current
+r=r1+r5; //series combination of resistors
+rN=(r*r4)/(r+r4); //parallel combination of resistors (Norton resistance)
+I=(rN*IN)/(rN+r3);
+vx=-I*r3;
+disp(sprintf("By Norton Theorem, the value of Vx is %d V",vx));
+
+//END
diff --git a/1445/CH1/EX1.2/Ex1_2.sce b/1445/CH1/EX1.2/Ex1_2.sce
new file mode 100644
index 000000000..d9885ec94
--- /dev/null
+++ b/1445/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,34 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 2
+
+disp("CHAPTER 1");
+disp("EXAMPLE 2");
+
+//VARIABLE INITIALIZATION
+//star values ra, rc and rd
+ra=2; //in Ohms
+rc=4; //in Ohms
+rd=3; //in Ohms
+r1=5; //in Ohms
+r2=4; //in Ohms
+r3=6; //in Ohms
+
+//SOLUTION
+//converting star with points A, C and D into delta ACD
+r=(ra*rc)+(rc*rd)+(rd*ra); //'r' is the resistance that appears in the numerator of the equation of star-delta conversion
+
+//delta values rac, rcd and rad
+rac=r/rd;
+rcd=r/ra;
+rad=r/rc;
+req1=(r1*rad)/(r1+rad); //equivalent resistance between A and D
+req2=(r2*rcd)/(r2+rcd); //equivalent resistance between C and D
+req3=req1+req2; //series combination of resistors
+req4=(req3*rac)/(req3+rac); //parallel combination of resistors
+req5=req4+r3;
+req6=(req5*7)/(req5+7);
+disp(sprintf("The eqivalent resistance between points A and B is %.2f Ω",req6));
+
+//END
+
+
diff --git a/1445/CH1/EX1.20/Ex1_20.sce b/1445/CH1/EX1.20/Ex1_20.sce
new file mode 100644
index 000000000..0255e39d2
--- /dev/null
+++ b/1445/CH1/EX1.20/Ex1_20.sce
@@ -0,0 +1,32 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 20
+
+disp("CHAPTER 1");
+disp("EXAMPLE 20");
+
+//VARIABLE INITIALIZATION
+I=20; //current source in Amperes
+v1=10; //voltage source in Volts
+v2=40; //voltage source in Volts
+r1=8; //in Ohms
+r2=5; //in Ohms
+r3=4; //in Ohms
+r4=12; //in Ohms
+
+//SOLUTION
+req=r1+r2;
+rn=(req*r3)/(req+r3);
+//finding In by mesh analysis
+//(17)I2+(-4)I3=110.......eq (1)
+//(1)I2+(-1)I3=-10........eq (2)
+//solving the equations by matrix mehod
+A=[17 -4;1 -1];
+b=[110;-10];
+x=inv(A)*b;
+I2=x(1,:); //to access the 1st element of 2X1 matrix
+I3=x(2,:); //to access the 2nd element of 2X1 matrix
+In=I3;
+I=(rn*In)/(rn+r4);
+disp(sprintf("By Norton Theorem, the value of I is %.3f A",I));
+
+//END
diff --git a/1445/CH1/EX1.21/Ex1_21.sce b/1445/CH1/EX1.21/Ex1_21.sce
new file mode 100644
index 000000000..6529af7b8
--- /dev/null
+++ b/1445/CH1/EX1.21/Ex1_21.sce
@@ -0,0 +1,35 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 21
+
+disp("CHAPTER 1");
+disp("EXAMPLE 21");
+
+//VARIABLE INITIALIZATION
+I=20; //current source in Amperes
+v1=10; //voltage source in Volts
+v2=40; //voltage source in Volts
+r1=8; //in Ohms
+r2=5; //in Ohms
+r3=4; //in Ohms
+r4=12; //in Ohms
+
+//SOLUTION
+
+req=r1+r2; //series combination of resistors
+rth=(req*r3)/(req+r3); //parallel connection of resistors (Thevenin resistance)
+
+//by using nodal analysis, the following equations are obtained
+//(13)v1+(-8)v2=750.......eq (1)
+//(-4)v1+(9)v2=200........eq (2)
+//solving the equations by matrix mehod
+
+A=[13 -8;-4 9];
+b=[750;200];
+x=inv(A)*b;
+v1=x(1,:); //to access the 1st element of 2X1 matrix
+v2=x(2,:); //to access the 2nd element of 2X1 matrix
+vth=v2; //Thevenin voltage
+I=vth/(rth+r4); //Thevenin current
+disp(sprintf("By Thevenin Theorem, the value of I is %.3f A",I));
+
+//END
diff --git a/1445/CH1/EX1.22/Ex1_22.sce b/1445/CH1/EX1.22/Ex1_22.sce
new file mode 100644
index 000000000..5f8a39459
--- /dev/null
+++ b/1445/CH1/EX1.22/Ex1_22.sce
@@ -0,0 +1,30 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 22
+
+disp("CHAPTER 1");
+disp("EXAMPLE 22");
+
+//VARIABLE INITIALIZATION
+I1=20; //current source in Amperes
+v1=10; //voltage source in Volts
+v2=40; //voltage source in Volts
+r1=8; //in Ohms
+r2=5; //in Ohms
+r3=4; //in Ohms
+r4=12; //in Ohms
+
+//SOLUTION
+
+//by using mesh analysis the following equations are obtained
+//(17)I2+(-4)I3=110.......eq (1)
+//(-1)I2+(4)I3=10.........eq (2)
+//solving the equations by matrix method
+A=[17 -4;-1 4];
+b=[110;10];
+x=inv(A)*b;
+I2=x(1,:); //to access the 1st element of 2X1 matrix
+I3=x(2,:); //to access the 2nd element of 2X1 matrix
+I=I3;
+disp(sprintf("By mesh analysis, the value of I is %.3f A",I));
+
+//END
diff --git a/1445/CH1/EX1.23/Ex1_23.sce b/1445/CH1/EX1.23/Ex1_23.sce
new file mode 100644
index 000000000..b94474269
--- /dev/null
+++ b/1445/CH1/EX1.23/Ex1_23.sce
@@ -0,0 +1,27 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 23
+
+disp("CHAPTER 1");
+disp("EXAMPLE 23");
+
+//VARIABLE INITIALIZATION
+I1=20; //current source in Amperes
+v1=10; //voltage source in Volts
+v2=40; //voltage source in Volts
+r1=8; //in Ohms
+r2=5; //in Ohms
+r3=4; //in Ohms
+r4=12; //in Ohms
+
+//SOLUTION
+//(17)I2+(-4)I3=110.......eq (1)
+//(-4)v1+(16)I3=40........eq (2)
+//solving the equations by matrix mehod
+A=[17 -4;-4 16];
+b=[110;40];
+x=inv(A)*b;
+I2=x(1,:); //to access the 1st element of 2X1 matrix
+I3=x(2,:); //to access the 2nd element of 2X1 matrix
+disp(sprintf("By Nodal analysis, the value of I is %.3f A",I3));
+
+//END
diff --git a/1445/CH1/EX1.24/Ex1_24.sce b/1445/CH1/EX1.24/Ex1_24.sce
new file mode 100644
index 000000000..1bb5528b5
--- /dev/null
+++ b/1445/CH1/EX1.24/Ex1_24.sce
@@ -0,0 +1,34 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 24
+
+disp("CHAPTER 1");
+disp("EXAMPLE 24");
+
+//VARIABLE INITIALIZATION
+I=20; //current source in Amperes
+v1=10; //voltage source in Volt
+v2=40; //voltage source in Volts
+r1=8; //in Ohms
+r2=5; //in Ohms
+r3=4; //in Ohms
+r4=12; //in Ohms
+
+//SOLUTION
+
+//activating 20A current source
+r=r2+((r3*r4)/(r3+r4));
+I1=(r*I1)/(r+r1);
+I_20=(r3*I1)/(r3+r4);
+
+//activating 10V battery source
+req=r1+r2;
+v_10=(-v1/req)/((1/req)+(1/r3)+(1/r4));
+I_10=v_10/r4;
+
+//activating 40V battery source
+v_40=(v2/r3)/((1/req)+(1/r3)+(1/r4));
+I_40=v_40/r4;
+I_tot=I_20+I_10+I_40;
+disp(sprintf("By Superposition Theorem, the value of I is .3%f A",I_tot));
+
+//END
diff --git a/1445/CH1/EX1.25/Ex1_25.sce b/1445/CH1/EX1.25/Ex1_25.sce
new file mode 100644
index 000000000..e1c250c68
--- /dev/null
+++ b/1445/CH1/EX1.25/Ex1_25.sce
@@ -0,0 +1,22 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 25
+
+disp("CHAPTER 1");
+disp("EXAMPLE 25");
+
+//SOLUTION
+//(1)I1+(0)I2+(0)I3=5.............eq (1)
+//(-20)I1+(50)I2+(-20)I3=0........eq (2)
+//(0)I1+(1)I2+(-1)I3=5............eq (3)
+//solving the equations by matrix mehod
+A=[1 0 0;-20 50 -20;0 1 -1];
+b=[5;0;5];
+x=inv(A)*b;
+I1=x(1,:); //to access the 1st element of 3X1 matrix
+I2=x(2,:); //to access the 2nd element of 3X1 matrix
+I3=x(3,:); //to access the 3rd element of 3X1 matrix
+I=I2;
+disp(sprintf("By Mesh analysis, the value of I is %d A",I));
+
+//END
+
diff --git a/1445/CH1/EX1.26/Ex1_26.sce b/1445/CH1/EX1.26/Ex1_26.sce
new file mode 100644
index 000000000..18b2768c4
--- /dev/null
+++ b/1445/CH1/EX1.26/Ex1_26.sce
@@ -0,0 +1,19 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 26
+
+disp("CHAPTER 1");
+disp("EXAMPLE 26");
+
+//VARIABLE INITIALIZATION
+I1=5; //current source in Amperes
+v2=100; //voltage source in Volts
+r1=20; //in Ohms
+r2=10; //in Ohms
+r3=20; //in Ohms
+
+//SOLUTION
+v1=(I1+(v2/r2))/((1/r1)+(1/r2));
+I=(v1-v2)/r2;
+disp(sprintf("By Nodal analysis, the value of I is %d A",I));
+
+//END
diff --git a/1445/CH1/EX1.27/Ex1_27.sce b/1445/CH1/EX1.27/Ex1_27.sce
new file mode 100644
index 000000000..e4aa7816d
--- /dev/null
+++ b/1445/CH1/EX1.27/Ex1_27.sce
@@ -0,0 +1,21 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 27
+
+disp("CHAPTER 1");
+disp("EXAMPLE 27");
+
+//VARIABLE INITIALIZATION
+I1=5; //current source in Amperes
+vb=100; //voltage source in Volts
+r1=20; //in Ohms
+r2=10; //in Ohms
+r3=20; //in Ohms
+
+//SOLUTION
+va=I1*r1; //by applying node analysis at point 'a'
+vth=va-vb; //Thevenin voltage vth=vab
+rth=r1+((r3*0)/(r3+0)); //Thevenin resistance
+I=vth/(rth+r2);
+disp(sprintf("By Thevenin Theorem, the value of I is %d A",I));
+
+//END
diff --git a/1445/CH1/EX1.28/Ex1_28.sce b/1445/CH1/EX1.28/Ex1_28.sce
new file mode 100644
index 000000000..2391711a6
--- /dev/null
+++ b/1445/CH1/EX1.28/Ex1_28.sce
@@ -0,0 +1,20 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 28
+
+disp("CHAPTER 1");
+disp("EXAMPLE 28");
+
+//VARIABLE INITIALIZATION
+I1=5; //current source in Amperes
+va=100; //voltage source in Volts
+r1=20; //in Ohms
+r2=10; //in Ohms
+r3=20; //in Ohms
+
+//SOLUTION
+IN=I1-(va/r1); //using nodal analysis at point 'a'
+rN=r1+((r3*0)/(r3+0));
+I=(rN*IN)/(rN+r2);
+disp(sprintf("By Norton Theorem, the value of I is %d A",I));
+
+//END
diff --git a/1445/CH1/EX1.29/Ex1_29.sce b/1445/CH1/EX1.29/Ex1_29.sce
new file mode 100644
index 000000000..319e202f9
--- /dev/null
+++ b/1445/CH1/EX1.29/Ex1_29.sce
@@ -0,0 +1,25 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 29
+
+disp("CHAPTER 1");
+disp("EXAMPLE 29");
+
+//VARIABLE INITIALIZATION
+I=5; //current source in Amperes
+v=100; //voltage source in Volts
+r1=20; //in Ohms
+r2=10; //in Ohms
+r3=20; //in Ohms
+
+//SOLUTION
+
+//activating current source
+I1=(I*r1)/(r1+r2); //by current divider law
+
+//activating voltage source
+I2=-(v/(r1+r2));
+
+I_tot=I1+I2;
+disp(sprintf("By Superposition Theorem, the value of I is %d A",I_tot));
+
+//END
diff --git a/1445/CH1/EX1.3/Ex1_3.sce b/1445/CH1/EX1.3/Ex1_3.sce
new file mode 100644
index 000000000..fdaccbce2
--- /dev/null
+++ b/1445/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,38 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 3
+
+disp("CHAPTER 1");
+disp("EXAMPLE 3");
+
+//VARIABLE INITIALIZATION
+r1=4.6; //in Ohms
+r2=7.6; //in Ohms
+
+
+//star values
+rc=3;
+rd=7;
+re=5;
+
+//SOLUTION
+//converting star with points C, D and E to delta CDE
+r=(rc*rd)+(rd*re)+(re*rc); //'r' is the resistance that appears in the numerator of the equation of star-delta conversion
+
+//delta values rcd, rde and rec
+rcd=r/re;
+rde=r/rc;
+rec=r/rd;
+req1=(8*rec)/(8+rec); //equivalent resistance between C and E
+req2=(6*rde)/(6+rde); //equivalent resistance between D and E
+req3=(4*rcd)/(4+rcd); //equivalent resistance between C and D
+req4=req2+req3;
+req5=(req1*req4)/(req1+req4); //parallel combination of resistors
+req6=req5+r1; //series combination of resistors
+req7=(req6*r2)/(req6+r2);
+disp(sprintf("The equivalent resistance between points A and B is %.2f Ω",req7));
+
+//END
+
+
+
+
diff --git a/1445/CH1/EX1.30/Ex1_30.sce b/1445/CH1/EX1.30/Ex1_30.sce
new file mode 100644
index 000000000..54c39d141
--- /dev/null
+++ b/1445/CH1/EX1.30/Ex1_30.sce
@@ -0,0 +1,42 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 30
+
+disp("CHAPTER 1");
+disp("EXAMPLE 30");
+
+//VARIABLE INITIALIZATION
+I1=25; //current source in Amperes
+I2=20; //current source in Amperes
+v=20; //voltage source in Volts
+r1=4; //LHS resistance in Ohms
+r2=10; //in Ohms
+r3=2; //in Ohms
+r4=1; //in Ohms
+r5=10; //RHS resistance in Ohms
+
+//SOLUTION
+
+//source transformation
+v1=I1*r1; //current source I1 is converted to voltage source v1
+v2=I2*r3; //current source I2 is converted to voltage source v2
+
+//using mesh analysis
+//(8)IA+(-1)IB=30........eq (1)
+//(-2)IA+(3)IB=20........eq (2)
+//solving the equations by matrix method
+A=[8 -1;-2 3];
+b=[30;20];
+x=inv(A)*b;
+IA=x(1,:); //to access the 1st element of 2X1 matrix
+IB=x(2,:); //to access the 2nd element of 2X1 matrix
+disp(sprintf("By Mesh analysis I_A= %d A and I_B= %d A",IA,IB));
+
+//using nodal analysis
+req=r1+r2;
+res=(v1/req)+(v2/r3)+(v/r4);
+v3=res/((1/req)+(1/r3)+(1/r4));
+I3=(v1-v3)/req;
+I4=(v2-v)/r3; //since here ((v2-v)/r3)=((v3-v)/r4) (this is only done for convinient calculation)
+disp(sprintf("By Nodal analysis I_1= %d A and I_2= %d A",I3,I4));
+
+//END
diff --git a/1445/CH1/EX1.31/Ex1_31.sce b/1445/CH1/EX1.31/Ex1_31.sce
new file mode 100644
index 000000000..fd519c1c9
--- /dev/null
+++ b/1445/CH1/EX1.31/Ex1_31.sce
@@ -0,0 +1,38 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 31
+
+disp("CHAPTER 1");
+disp("EXAMPLE 31");
+
+//VARIABLE INITIALIZATION
+r1=6; //in Ohms
+r2=4; //in Ohms
+r3=4; //in Ohms
+r4=4; //in Ohms
+r5=6; //in Ohms
+r6=6; //in Ohms
+r7=6; //in Ohms
+r8=8; //in Ohms
+r9=4; //in Ohms
+r10=10; //in Ohms
+r11=10; //middle resistance in Ohms
+
+//SOLUTION
+//converting delta cde in a star
+req1=r5+r6+r7;
+req2=(r6*r7)/req1;
+req3=(r5*r6)/req1;
+req4=(r5*r7)/req1;
+
+req5=r1+r2+r3; //on LHS of middle resistance
+req6=r4+req2; //top LHS
+req7=req4+r11; //equivalent middle resistance
+req8=req3+r8+r9+r10; //top RHS
+
+req9=(req7*req8)/(req7+req8); //parallel combination of resistors
+req10=req9+req6; //series combination of resistors
+req11=(req5*req10)/(req5+req10);
+
+disp(sprintf("The equivalent resistance between A and B is %d Ω",req11));
+
+//END
diff --git a/1445/CH1/EX1.32/Ex1_32.sce b/1445/CH1/EX1.32/Ex1_32.sce
new file mode 100644
index 000000000..c8b992869
--- /dev/null
+++ b/1445/CH1/EX1.32/Ex1_32.sce
@@ -0,0 +1,30 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 32
+
+disp("CHAPTER 1");
+disp("EXAMPLE 32");
+
+//VARIABLE INITIALIZATION
+I=10; //current source in Amperes
+v=10; //voltage source in Volts
+r1=4; //top resistance in Ohms
+r1=4; //right resistance in Ohms
+r3=4; //bottom resistance in Ohms
+r4=6; //left resistance in Ohms
+r5=1; //in Ohms
+
+//SOLUTION
+//without converting the current source into voltage source
+//(10)I1+(-4)I2+(0)I3=50........eq (1)
+//(-4)I1+(9)I2+(-4)I3=0.........eq (2)
+//(0)I1+(-4)I2+(8)I3=10.........eq (3)
+//solving the equations by matrix method
+A=[10 -4 0;-4 9 -4;0 -4 8];
+b=[50;0;10];
+x=inv(A)*b;
+I2=x(2,:); //to access the 2nd element of 3X1 matrix
+disp(sprintf("By Mesh analysis, the current through 1Ω resistor is %.2f A",I2));
+
+//END
+
+
diff --git a/1445/CH1/EX1.33/Ex1_33.sce b/1445/CH1/EX1.33/Ex1_33.sce
new file mode 100644
index 000000000..60903ad05
--- /dev/null
+++ b/1445/CH1/EX1.33/Ex1_33.sce
@@ -0,0 +1,36 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 33
+
+disp("CHAPTER 1");
+disp("EXAMPLE 33");
+
+//VARIABLE INITIALIZATION
+I=10; //current source in Amperes
+v=10; //voltage source in Volts
+r1=4; //top resistance in Ohms
+r1=4; //right resistance in Ohms
+r3=4; //bottom resistance in Ohms
+r4=6; //left resistance in Ohms
+r5=1; //in Ohms
+
+//SOLUTION
+
+//by applying nodal analysis at node 1, the following equations are obtained:
+//(17)v1+(-12)v2=150.......eq (1)
+//(-4)v1+(6)v2=10..........eq (2)
+//solving the equations by matrix method
+
+A=[17 -12;-4 6];
+b=[150;10];
+x=inv(A)*b;
+v1=x(1,:); //to access the 1st element of 2X1 matrix
+v2=x(2,:); //to access the 1st element of 2X1 matrix
+if(v1>v2) then
+I=(v1-v2)/r5;
+disp(sprintf("By nodal analysis, the current through 1Ω resistor is %.3f A",I));
+else
+I=(v2-v1)/r5;
+disp(sprintf("By nodal analysis, the current through 1Ω resistor is %.3f A",I));
+end;
+
+//END
diff --git a/1445/CH1/EX1.34/Ex1_34.sce b/1445/CH1/EX1.34/Ex1_34.sce
new file mode 100644
index 000000000..2b8ba28a7
--- /dev/null
+++ b/1445/CH1/EX1.34/Ex1_34.sce
@@ -0,0 +1,51 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 34
+
+disp("CHAPTER 1");
+disp("EXAMPLE 34");
+
+//VARIABLE INITIALIZATION
+I=10; //current source in Amperes
+v=10; //voltage source in Volts
+r1=4; //top resistance in Ohms
+r1=4; //right resistance in Ohms
+r3=4; //bottom resistance in Ohms
+r4=6; //left resistance in Ohms
+r5=1; //in Ohms
+
+//SOLUTION
+
+//activating the current source
+//(17)v1+(-12)v2=120.......eq (1)
+//(-4)v1+(6)v2=0...........eq (2)
+//solving the equations by matrix method
+A=[17 -12;-4 6];
+b=[120;0];
+x=inv(A)*b;
+v1=x(1,:); //to access the 1st element of 2X1 matrix
+v2=x(2,:); //to access the 1st element of 2X1 matrix
+if(v1>v2) then
+I1=(v1-v2)/r5;
+else
+I1=(v2-v1)/r5;
+end;
+
+//activating the voltage source
+//(17)v1+(-12)v2=30.......eq (1)
+//(-4)v1+(6)v2=10...........eq (2)
+//solving the equations by matrix method
+A=[17 -12;-4 6];
+b=[30;10];
+x=inv(A)*b;
+v3=x(1,:); //to access the 1st element of 2X1 matrix
+v4=x(2,:); //to access the 1st element of 2X1 matrix
+if(v3>v4) then
+I2=(v3-v4)/r5;
+else
+I2=(v4-v3)/r5;
+end;
+
+I_tot=I1+I2;
+disp(sprintf("By Superposition Theorem, the current through 1Ω resistor is %.3f A",I_tot));
+
+//END
diff --git a/1445/CH1/EX1.35/Ex1_35.sce b/1445/CH1/EX1.35/Ex1_35.sce
new file mode 100644
index 000000000..453b01ba6
--- /dev/null
+++ b/1445/CH1/EX1.35/Ex1_35.sce
@@ -0,0 +1,27 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 35
+
+disp("CHAPTER 1");
+disp("EXAMPLE 35");
+
+//VARIABLE INITIALIZATION
+I=10; //current source in Amperes
+v=10; //voltage source in Volts
+r1=4; //top resistance in Ohms
+r2=4; //right resistance in Ohms
+r3=4; //bottom resistance in Ohms
+r4=6; //left resistance in Ohms
+r5=1; //in Ohms
+
+//SOLUTION
+res=I+(v/r1); //'res' is used to make calucations easy
+va=res/((1/r4)+(1/r1)); //applying nodal analysis at node 1
+vb=(v/r2)/((1/r2)+(1/r3)); //applying nodal analysis at node 2
+vth=va-vb;
+req1=(r1*r4)/(r1+r4);
+req2=(r2*r3)/(r2+r3);
+rth=req1+req2;
+Ith=vth/(rth+r5);
+disp(sprintf("By Thevenin Theorem, the current through the 1Ω resistor is %.3f A",Ith));
+
+//END
diff --git a/1445/CH1/EX1.36/Ex1_36.sce b/1445/CH1/EX1.36/Ex1_36.sce
new file mode 100644
index 000000000..86044a5a5
--- /dev/null
+++ b/1445/CH1/EX1.36/Ex1_36.sce
@@ -0,0 +1,30 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 36
+
+disp("CHAPTER 1");
+disp("EXAMPLE 36");
+
+//VARIABLE INITIALIZATION
+I=10; //current source in Amperes
+v=10; //voltage source in Volts
+r1=4; //top resistance in Ohms
+r2=4; //right resistance in Ohms
+r3=4; //bottom resistance in Ohms
+r4=6; //left resistance in Ohms
+r5=1; //in Ohms
+
+//SOLUTION
+//(1)v1+(12/5)In=30........eq (1)
+//(2)v1+(-4)In=10..........eq (2)
+A=[1 12/5;2 -4];
+b=[30;10];
+x=inv(A)*b;
+v1=x(1,:); //to access the 1st element of 2X1 matrix
+In=x(2,:); //to access the 2nd element of 2X1 matrix
+req1=(r1*r4)/(r1+r4);
+req2=(r2*r3)/(r2+r3);
+rn=req1+req2;
+I1=(rn*In)/(rn+r5);
+disp(sprintf("By Norton Theorem, the current through 1Ω resistor is %.3f A",I1));
+
+//END
diff --git a/1445/CH1/EX1.37/Ex1_37.sce b/1445/CH1/EX1.37/Ex1_37.sce
new file mode 100644
index 000000000..b7eb9f63a
--- /dev/null
+++ b/1445/CH1/EX1.37/Ex1_37.sce
@@ -0,0 +1,54 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 37
+
+disp("CHAPTER 1");
+disp("EXAMPLE 37");
+
+//VARIABLE INITIALIZATION
+v1=90; //voltage source in Volts
+r1=8; //in Ohms
+r2=6; //in Ohms
+r3=5; //in Ohms
+r4=4; //in Ohms
+r5=8; //diagonal resistance in Ohms
+r6=8; //in Ohms
+
+//SOLUTION
+
+//solution (i): using Thevenin's Theorem
+//(3)v1+(-2)v2=90...........eq (1) //applying nodal analysis at node 1
+//(-2)v1+(4)v2=-90..........eq (2) //applying nodal analysis at node 2
+A=[3 -2;-2 4];
+b=[90;-90];
+x=inv(A)*b;
+v1=x(1,:);
+v2=x(2,:);
+vth=v1;
+req1=(r1*r5)/(r1+r5);
+req2=req1+r4;
+req3=(req2*r6)/(req2+r6);
+rth=req3+r2;
+vab1=(vth*r3)/(rth+r3);
+disp(sprintf("By Thevenin Theorem, the value of Vab is %.2f V",vab1));
+
+//solution (ii): using Norton's Theorem
+//(13)v1+(-7)v2=270.........eq (1) //applying nodal analysis at node 1
+//(7)v1+(-13)v2=0...........eq (2) //applying nodal analysis at node 2
+A=[13 -7;7 -13];
+b=[270;0];
+x=inv(A)*b;
+v1=x(1,:);
+v2=x(2,:);
+req1=(r1*r5)/(r1+r5);
+req2=req1+r4;
+req3=(req2*r6)/(req2+r6);
+rN=req3+r2;
+if(v1>v2) then
+In=(v1-v2)/r2;
+else
+IN=(v2-v1)/r2;
+end;
+vab2=(r3*IN)*(rN/(rth+r3));
+disp(sprintf("By Norton Theorem, the value of Vab is %.2f V",vab2));
+
+//END
diff --git a/1445/CH1/EX1.38/Ex1_38.sce b/1445/CH1/EX1.38/Ex1_38.sce
new file mode 100644
index 000000000..7cde0f2d3
--- /dev/null
+++ b/1445/CH1/EX1.38/Ex1_38.sce
@@ -0,0 +1,37 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 38
+
+disp("CHAPTER 1");
+disp("EXAMPLE 38");
+
+//VARIABLE INITIALIZATION
+I=2; //current source in Amperes
+r1=2; //in Ohms
+r2=1; //in Ohms
+r3=1; //in Ohms
+r4=2; //in Ohms
+
+//SOLUTION
+
+//Thevenin Equivalent circuit
+I1=1; //since there is equal resistance of 3Ω, hence, current=1A
+vth=(I1*r2)+(-I1*r4);
+req1=r1+r2;
+req2=r3+r4;
+rth=(req1*req2)/(req1+req2);
+disp("THEVENIN EQUIVALENT CIRCUIT IS-");
+disp(sprintf(" Thevenin voltage= %d V",vth));
+disp(sprintf(" Thevenin resistance= %.2f Ω",rth));
+
+//Norton Equivalent circuit
+v1=I/((1/r2)+(1/r4));
+v2=-I/((1/r3)+(1/r1));
+req1=r1+r2;
+req2=r3+r4;
+rn=(req1*req2)/(req1+req2);
+Isc=(v1/r4)+v2;
+disp("NORTON EQUIVALENT CIRCUIT IS-");
+disp(sprintf(" Norton current= %.3f A",Isc));
+disp(sprintf(" Norton resistance= %.3f Ω",rn));
+
+//END
diff --git a/1445/CH1/EX1.39/Ex1_39.sce b/1445/CH1/EX1.39/Ex1_39.sce
new file mode 100644
index 000000000..237e65eb5
--- /dev/null
+++ b/1445/CH1/EX1.39/Ex1_39.sce
@@ -0,0 +1,21 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 39
+
+disp("CHAPTER 1");
+disp("EXAMPLE 39");
+
+//VARIABLE INITIALIZATION
+v=2; //in Volts
+r=2; //in Ohms
+
+//SOLUTION
+z_star=r/3;
+req1=(r/3)+r;
+req2=(r/3)+r;
+req3=(req1*req2)/(req1+req2);
+req4=(r/3)+req3;
+req5=(req4*r)/(req4+r);
+I=v/req5;
+disp(sprintf("The value of I is %d A",I));
+
+//END
diff --git a/1445/CH1/EX1.4/Ex1_4.sce b/1445/CH1/EX1.4/Ex1_4.sce
new file mode 100644
index 000000000..b8847eae1
--- /dev/null
+++ b/1445/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,41 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 4
+
+disp("CHAPTER 1");
+disp("EXAMPLE 4");
+
+//VARIABLE INITIALIZATION
+r1=1; //LHS resistance in Ohms
+r2=2; //in Ohms
+r3=3; //in Ohms
+r4=4; //in Ohms
+r5=5; //in Ohms
+r6=6; //in Ohms
+r7=7; //in Ohms
+r8=8; //RHS resistance in Ohms
+
+//SOLUTION
+
+//To find resistance between a and b
+req1=r1+r2; //series combination of resistors
+req2=(req1*r3)/(req1+r3); //parallel combination of resistors
+req3=req2+(r4+r5);
+req4=(req3*r6)/(req3+r6);
+req5=req4+r7;
+req6=(req5*r8)/(req5+r8);
+disp(sprintf("The eqiuvalent resistance between points a and b is %.2f Ω",req6));
+
+//To find resistance between c and d
+req7=r7+r8;
+req8=(req7*r6)/(req7+r6);
+req9=req2+r5+req8;
+req10=(req9*r4)/(req9+r4);
+disp(sprintf("The eqiuvalent resistance between points c and d is %.2f Ω",req10));
+
+//To find resistance between d and e
+req11=req2+r4+r5;
+req12=(req11*r6)/(req11+r6);
+req13=(req12*req7)/(req12+req7);
+disp(sprintf("The eqiuvalent resistance between points d and e is %.2f Ω",req13));
+
+//END
diff --git a/1445/CH1/EX1.40/Ex1_40.sce b/1445/CH1/EX1.40/Ex1_40.sce
new file mode 100644
index 000000000..6f60627ea
--- /dev/null
+++ b/1445/CH1/EX1.40/Ex1_40.sce
@@ -0,0 +1,33 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 40
+
+disp("CHAPTER 1");
+disp("EXAMPLE 40");
+
+//VARIABLE INITIALIZATION
+v1=20; //in Volts
+v2=10; //in Volts
+r1=5; //top resistance in Ohms
+r2=10; //bottom resistance in Ohms
+r3=5; //in Ohms
+r4=5; //in Ohms
+r5=10; //in Ohms
+
+//SOLUTION
+//(5)I1+(10)I3+(-10)I4=20............eq (1)
+//(0)I1+(10)I3+(10)I4=-50............eq (2)
+//(5)I1+(20)I3+(0)I4=-30.............eq (3) (eq(1) + eq(2))
+//Since the determinant of matrix A is 0, hence, the set of these equations cannot be solved by matrix method
+//So, solving them directly,
+
+I3=-15/25;
+I1=-3-(3/5);
+I4=-5-(-3/5);
+I=I1+3+5;
+disp("The currents (in Amperes) flowing in different branches are:");
+disp(I1);
+disp(I3);
+disp(I4);
+disp(sprintf("The total current is %.2f A",I));
+
+//END
diff --git a/1445/CH1/EX1.41/Ex1_41.sce b/1445/CH1/EX1.41/Ex1_41.sce
new file mode 100644
index 000000000..53e65b5b2
--- /dev/null
+++ b/1445/CH1/EX1.41/Ex1_41.sce
@@ -0,0 +1,30 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 41
+
+disp("CHAPTER 1");
+disp("EXAMPLE 41");
+
+//VARIABLE INITIALIZATION
+vs=6; //in Volts
+Is=4; //in Amperes
+r1=5; //in Ohms
+r2=2; //in Ohms
+r3=2; //in Ohms
+r=2/3; //in Ohms
+r4=3; //in Ohms
+r5=1; //in Ohms
+r6=2; //in Ohms
+
+//SOLUTION
+req1=(r2*r3)/(r2+r3);
+req2=req1+r1; //resistance across vs
+va=vs/req2; //voltage divider law
+rth1=(req1*r1)/(req1+r1);
+I1=Is*(r2/req2); //current divider law
+vb=I1*r4;
+rth2=(r4*r4)/(r4+r4);
+I=(vb-va)/(rth1+r+rth2);
+disp(sprintf("The value of the current is %d A",I));
+
+//END
+
diff --git a/1445/CH1/EX1.42/Ex1_42.sce b/1445/CH1/EX1.42/Ex1_42.sce
new file mode 100644
index 000000000..4d3388dd9
--- /dev/null
+++ b/1445/CH1/EX1.42/Ex1_42.sce
@@ -0,0 +1,40 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 42
+
+disp("CHAPTER 1");
+disp("EXAMPLE 42");
+
+//VARIABLE INITIALIZATION
+v=10; //in Volts
+I=0.5; //in Amperes
+r1=4; //top LHS resistance in Ohms
+r2=2; //top RHS resistance in Ohms
+r3=2; //first resistance in Ohms
+r4=2; //second resistance in Ohms
+
+//SOLUTION
+
+//using Thevenin's theorem
+rth=(r1*r3)/(r1+r3);
+vth=v*(r3/(r1+r3)); //Thevenin voltage
+R=(40-(56*I))/(24*I); //solving for R directly
+disp(sprintf("(i) By Thevenin Theorem, the value of R is %d Ω",R));
+
+//v1=(10R+4)/(3R+4)........eq(1) //using nodal analysis at node 1
+//v1=1+R...................eq(2) //using nodal analysis at node 2
+//the following the quadratic equation is formed when both the equations are compared
+//(3)R^2+(-3)R+(0)=0
+//solving the quadratic equation
+a=3;
+b=-3;
+c=0;
+D=(b^2)-(4*a*c); //discriminant
+R1=(-b+sqrt(D))/(2*a);
+R2=(-b-sqrt(D))/(2*a);
+if(R1==1) then
+disp(sprintf("(ii) By Nodal analysis, the value of R is %d Ω",R1));
+else
+disp(sprintf("(ii) By Nodal analysis, the value of R is %d Ω",R1));
+end;
+
+//END
diff --git a/1445/CH1/EX1.43/Ex1_43.sce b/1445/CH1/EX1.43/Ex1_43.sce
new file mode 100644
index 000000000..ad30b370f
--- /dev/null
+++ b/1445/CH1/EX1.43/Ex1_43.sce
@@ -0,0 +1,25 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 43
+
+disp("CHAPTER 1");
+disp("EXAMPLE 43");
+
+//VARIABLE INITIALIZATION
+Is1=2; //first current source in Amperes
+Is2=4; //second current source in Amperes
+v=2; //in Volts
+r1=200; //in Ohms
+r2=100; //in Ohms
+r3=4; //in Ohms
+
+//SOLUTION
+req1=34;
+I1=Is2*(r3/req1);
+req2=24;
+Iab=Is1*(req2/req1);
+I=Iab+I1;
+vab=I*10;
+disp(sprintf("By Superposition Theorem the voltage Vab is %.3f V",vab));
+
+//END
+
diff --git a/1445/CH1/EX1.44/Ex1_44.sce b/1445/CH1/EX1.44/Ex1_44.sce
new file mode 100644
index 000000000..e060456a9
--- /dev/null
+++ b/1445/CH1/EX1.44/Ex1_44.sce
@@ -0,0 +1,15 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 44
+
+disp("CHAPTER 1");
+disp("EXAMPLE 44");
+
+//VARIABLE INITIALIZATION
+I=40; //in Amperes
+r=5; //in Ohms
+
+//SOLUTION
+v=I*r; //Ohm's Law
+disp(sprintf("The voltage required is %d V",v));
+
+//END
diff --git a/1445/CH1/EX1.45/Ex1_45.sce b/1445/CH1/EX1.45/Ex1_45.sce
new file mode 100644
index 000000000..361cfdda5
--- /dev/null
+++ b/1445/CH1/EX1.45/Ex1_45.sce
@@ -0,0 +1,15 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 45
+
+disp("CHAPTER 1");
+disp("EXAMPLE 45");
+
+//VARIABLE INITIALIZATION
+w=5*1000; //power consumed by coil in Watts
+v=200; //applied voltage in Volts
+
+//SOLUTION
+r=(v^2)/w; //since w=(v^2)/r
+disp(sprintf("Value of resistance is %d Ω",r));
+
+//END
diff --git a/1445/CH1/EX1.46/Ex1_46.sce b/1445/CH1/EX1.46/Ex1_46.sce
new file mode 100644
index 000000000..4623527b7
--- /dev/null
+++ b/1445/CH1/EX1.46/Ex1_46.sce
@@ -0,0 +1,26 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 46
+
+disp("CHAPTER 1");
+disp("EXAMPLE 46");
+
+//VARIABLE INITIALIZATION
+v=240; //in Volts
+
+//SOLUTION
+//case1: p=60W
+p1=60; //in Watts
+r1=(v^2)/p1;
+disp(sprintf("Resistance of the metal filament lamp is %d Ω",r1));
+
+//case2: p=100W
+p2=100; //in Watts
+r2=(v^2)/p2;
+
+if(r1>r2) then
+disp(sprintf("Resistance of %d W lamp will be greater",p1));
+else
+disp(sprintf("Resistance of %d W lamp will be greater",p2));
+end;
+
+//END
diff --git a/1445/CH1/EX1.47/Ex1_47.sce b/1445/CH1/EX1.47/Ex1_47.sce
new file mode 100644
index 000000000..9b53f1882
--- /dev/null
+++ b/1445/CH1/EX1.47/Ex1_47.sce
@@ -0,0 +1,32 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 47
+
+disp("CHAPTER 1");
+disp("EXAMPLE 47");
+
+//VARIABLE INITIALIZATION
+lc=20; //length of copper wire in m
+dc=0.015/100; //diameter of copper wire in m
+rhoc=1.7; //specific resistance for copper
+lp=15; //length of platinum silver wire in m
+dp=0.015/100; //diameter of platinum silver wire in m
+rhop=2.43; //specific resistance for platinum silver
+
+//SOLUTION
+
+//for copper wire
+sc=(%pi/4)*(dc^2); //area
+rc=rhoc*(lc/sc);
+
+//for platinum silver
+sp=(%pi/4)*(dp^2); //area
+rp=rhop*(lp/sp);
+
+
+if(rc>rp) then
+disp("Copper wire has greater resistance");
+else
+disp("Platinum silver wire has greater resistance");
+end;
+
+//END
diff --git a/1445/CH1/EX1.48/Ex1_48.sce b/1445/CH1/EX1.48/Ex1_48.sce
new file mode 100644
index 000000000..99933d888
--- /dev/null
+++ b/1445/CH1/EX1.48/Ex1_48.sce
@@ -0,0 +1,32 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 48
+
+disp("CHAPTER 1");
+disp("EXAMPLE 48");
+
+//VARIABLE INITIALIZATION
+v1=2.05; //1st cell in Volts
+v2=2.15; //2nd cell in Volts
+r1=0.05; //in Ohms
+r2=0.04; //in Ohms
+r3=1; //in Ohms
+
+//SOLUTION
+//(r3+r1)I1+(r3)I2=v1......eq (1)
+//(r3)I1+(r3+r2)I2=v2......eq (2)
+req1=r3+r1;
+req2=r3+r2;
+A=[req1 r3;r3 req2];
+b=[v1;v2];
+x=inv(A)*b;
+I1=x(1,:); //to access the 1st element of 2X1 matrix
+I2=x(2,:); //to access the 2nd element of 2X1 matrix
+I=I1+I2;
+pd=I*r3;
+disp(sprintf("Current through B1 is %.2f A",I1));
+disp(sprintf("Current through B2 is %.2f A",I2));
+disp(sprintf("Potential difference across AC is %.2f V",pd));
+
+//END
+
+
diff --git a/1445/CH1/EX1.49/Ex1_49.sce b/1445/CH1/EX1.49/Ex1_49.sce
new file mode 100644
index 000000000..1691f133c
--- /dev/null
+++ b/1445/CH1/EX1.49/Ex1_49.sce
@@ -0,0 +1,38 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 49
+
+disp("CHAPTER 1");
+disp("EXAMPLE 49");
+
+//VARIABLE INITIALIZATION
+v1=110; //voltage source in Volts
+v2=80; //voltage source in Volts
+v3=50; //voltage source in Volts
+r=2; //in Ohms
+
+//SOLUTION
+
+//solution (a)
+I1=4; //charging
+I2=6; //charging
+r1=((v1-v2)-((I1+I2)*r))/I1;
+r2=((v1-v3)-((I1+I2)*r))/I2;
+disp(sprintf("(a) R1= %.2f Ω",r1));
+disp(sprintf(" R2= %.2f Ω",r2));
+
+//solution (b)
+I1=2; //discharging
+I2=20; //charging
+r1=((v1-v2)-((I2-I1)*r))/(-I1);
+r2=((v1-v3)-((I2-I1)*r))/I2;
+disp(sprintf("(b) R1= %.2f Ω",r1));
+disp(sprintf(" R2= %.2f Ω",r2));
+
+//solution (c)
+I1=0;
+I2=(v1-v2)/r;
+r2=((v1-v3)-(I2*r))/I2;
+disp(sprintf("(c) I1=0 when R2= %d Ω",r2));
+
+//END
+
diff --git a/1445/CH1/EX1.5/Ex1_5.sce b/1445/CH1/EX1.5/Ex1_5.sce
new file mode 100644
index 000000000..01fbb7a42
--- /dev/null
+++ b/1445/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,39 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 5
+
+disp("CHAPTER 1");
+disp("EXAMPLE 5");
+
+//VARIABLE INITIALIZATION
+r1=2; //in Ohms
+r2=4; //in Ohms
+r3=8; //in Ohms
+r4=8; //in Ohms
+r5=2; //middle resistance in Ohms
+
+//SOLUTION
+
+//To find resistance between a and c
+req1=r1+r2;
+req2=r1+r4;
+req3=(req1*r1)/(req1+r1);
+rac=(req3*req2)/(req3+req2);
+disp(sprintf("The eqiuvalent resistance between points a and c is %.2f Ω",rac));
+
+//To find resistance between b and d
+//converting delta abc into star with points a, b and c
+//delta values
+rab=r1;
+rbc=r2;
+rac=6;
+//star values
+r=rab+rbc+rac; //'r' is the resistance that appears in the denominator of the equation of delta-star conversion
+ra=(rab*rbc)/r;
+rb=(rab*rac)/r;
+rc=(rbc*rac)/r;
+req5=rb+rac;
+req6=rc+8;
+rbd=ra+((req5*req6)/(req5+req6));
+disp(sprintf("The eqiuvalent resistance between points b and d is %.2f Ω",rbd));
+
+//END
diff --git a/1445/CH1/EX1.50/Ex1_50.sce b/1445/CH1/EX1.50/Ex1_50.sce
new file mode 100644
index 000000000..e1ce34a4e
--- /dev/null
+++ b/1445/CH1/EX1.50/Ex1_50.sce
@@ -0,0 +1,21 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 50
+
+disp("CHAPTER 1");
+disp("EXAMPLE 50");
+
+//SOLUTION
+//(5)I1+(-3)I2=10..........eq (1)
+//(-3)I1+(34)I2=40.........eq (2)
+A=[5 -3;-3 34];
+b=[10;40];
+x=inv(A)*b;
+I1=x(1,:); //to access the 1st element of 2X1 matrix
+I2=x(2,:); //to access the 2nd element of 2X1 matrix
+I=I2-I1;
+disp(sprintf("Current i1 is %.2f A (loop EFAB)",I1));
+disp(sprintf("Current i2 is %.2f A (loop BCDE)",abs(I)));
+
+//END
+
+
diff --git a/1445/CH1/EX1.51/Ex1_51.sce b/1445/CH1/EX1.51/Ex1_51.sce
new file mode 100644
index 000000000..cd7fdbdce
--- /dev/null
+++ b/1445/CH1/EX1.51/Ex1_51.sce
@@ -0,0 +1,23 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 51
+
+disp("CHAPTER 1");
+disp("EXAMPLE 51");
+
+//SOLUTION
+//(9)I1+(-5)I2+(-3)I3=5..........eq (1)
+//(-5)I1+(8)I2+(-1)I3=5..........eq (2)
+//(-3)I1+(-1)I2+(6)I3=3..........eq (3)
+A=[9 -5 -3;-5 8 -1;-3 -1 6];
+b=[5;5;3];
+x=inv(A)*b;
+I1=x(1,:); //to access the 1st element of 3X1 matrix
+I2=x(2,:); //to access the 2nd element of 3X1 matrix
+I3=x(3,:); //to access the 3rd element of 3X1 matrix
+disp(sprintf("Current i1 is %.2f A (loop ABGH)",I1));
+disp(sprintf("Current i2 is %.2f A (loop BCDH)",I2));
+disp(sprintf("Current i3 is %.2f A (loop GDEF)",I3));
+
+//END
+
+
diff --git a/1445/CH1/EX1.52/Ex1_52.sce b/1445/CH1/EX1.52/Ex1_52.sce
new file mode 100644
index 000000000..c669dfdd1
--- /dev/null
+++ b/1445/CH1/EX1.52/Ex1_52.sce
@@ -0,0 +1,46 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 52
+
+disp("CHAPTER 1");
+disp("EXAMPLE 52");
+
+//VARIABLE INITIALIZATION
+v1=20; //LHS voltage source in Volts
+v2=12; //RHS voltage source in Volts
+r1=5; //LHS resistance in Ohms
+r2=2; //in Ohms
+r3=8; //in Ohms
+r4=10; //RHS resistance in Ohms
+
+//SOLUTION
+
+//by Thevenin's Theorem
+rth=r3+((r1*r2)/(r1+r2)); //Thevenin resistance
+v=v1*(r2/(r1+r2)); //voltage divider law
+vab=-v2+(r3*0)+(rth*0)+v;
+It=vab/(rth+r4); //current obtained by applying Thevenin's Theorem
+Isc=vab/rth;
+disp(sprintf("By Thevenin Theorem, current in the 10Ω resistor is %.2f A",It));
+
+//verification by Norton's Theorem
+//(7)I1+(2)I2=20.................eq (1)
+//(2)I1+(10)I2=12................eq (2)
+//solving the equations using matrix method
+A=[7 2;2 10];
+b=[20;12];
+x=inv(A)*b;
+x1=x(1,:); //to access 1st element of 2X1 matrix
+x2=x(2,:); //to access 2nd element of 2X1 matrix and Isc=-x2
+Isc=-x2; //Isc is negative because its direction is opposite to I2
+I=Isc*(rth/(rth+r4)); //current obtained by applying Norton's Theorem
+if(It==I)
+disp(sprintf("By Norton Theorem, current in the 10Ω resistor is %.2f A",I));
+disp(sprintf("Hence, answer is confirmed by Norton Theorem"));
+else
+disp(sprintf("The answer is not confirmed by Norton Theorem"));
+end;
+
+//END
+
+
+
diff --git a/1445/CH1/EX1.53/Ex1_53.sce b/1445/CH1/EX1.53/Ex1_53.sce
new file mode 100644
index 000000000..2b20673b7
--- /dev/null
+++ b/1445/CH1/EX1.53/Ex1_53.sce
@@ -0,0 +1,26 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 53
+
+disp("CHAPTER 1");
+disp("EXAMPLE 53");
+
+//VARIABLE INITIALIZATION
+v1=10; //LHS voltage source in Volts
+v2=4; //RHS voltage source in Volts
+r1=2; //LHS resistance in Ohms
+r2=3; //in Ohms
+r3=10; //in Ohms
+r4=3; //in Ohms
+r5=1; //RHS resistance in Ohms
+
+//SOLUTION
+van=v1*(r2/(r1+r2)); //voltage divider law
+vbn=-v2*(r4/(r5+r4)); //voltage divider law
+ran=(r1*r2)/(r1+r2);
+rbn=(r4*r5)/(r4+r5);
+vab=(ran*0)+van-vbn+(rbn*0); //current is zero as AB is open circuited when Thevenin's Theorem is applied
+disp(sprintf("The Thevenin voltage is %d V",vab));
+
+//END
+
+
diff --git a/1445/CH1/EX1.54/Ex1_54.sce b/1445/CH1/EX1.54/Ex1_54.sce
new file mode 100644
index 000000000..f480cc116
--- /dev/null
+++ b/1445/CH1/EX1.54/Ex1_54.sce
@@ -0,0 +1,29 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 54
+
+disp("CHAPTER 1");
+disp("EXAMPLE 54");
+
+//VARIABLE INITIALIZATION
+v=5; //voltage source in Volts
+r1=1; //LHS resistance in Ohms
+r2=5; //in Ohms
+r3=1; //in Ohms
+r4=1; //RHS resistance in Ohms
+I=10; //current source in Amperes
+
+//SOLUTION
+
+req1=r1+r3+r4; //on deactivating the current source, current I1 flows in the circuit
+I1=v/req1;
+vab1=v-(I1*r1); //(I1*r1) is voltage drop across 1Ω resistance
+I2=I/req1;
+vab2=vab1+(I2*r1); //(I2*r1) is voltage drop across 1Ω resistance
+req=r1+((r3*r4)/(r3+r4)); //'req' is the same as 'Rth' mentioned in the book
+I=vab2/(req+r2);
+RTh=(6/5)+(3/4);
+req2=10+2;
+I3=9/12;
+disp(sprintf("The value of the current is %.2f A",I3));
+
+//END
diff --git a/1445/CH1/EX1.55/Ex1_55.sce b/1445/CH1/EX1.55/Ex1_55.sce
new file mode 100644
index 000000000..5c76ec6ec
--- /dev/null
+++ b/1445/CH1/EX1.55/Ex1_55.sce
@@ -0,0 +1,22 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 55
+
+disp("CHAPTER 1");
+disp("EXAMPLE 55");
+
+//VARIABLE INITIALIZATION
+vcd=50; //voltage source in Volts
+v=100; //voltage source in Volts
+r1=40; //in Ohms
+r2=50; //in Ohms
+r3=20; //in Ohms
+r4=10; //in Ohms
+
+//SOLUTION
+res=(vcd/r2)-(v/r3); //'res' (short for result) is used to make calculations easy
+vp=res/((1/r2)+(1/r3)+(1/r4));
+vba=vp+v;
+disp(sprintf("The voltage between A and B is %.2f V",vba));
+
+//END
+
diff --git a/1445/CH1/EX1.56/Ex1_56.sce b/1445/CH1/EX1.56/Ex1_56.sce
new file mode 100644
index 000000000..83663522a
--- /dev/null
+++ b/1445/CH1/EX1.56/Ex1_56.sce
@@ -0,0 +1,21 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 56
+
+disp("CHAPTER 1");
+disp("EXAMPLE 56");
+
+//VARIABLE INITIALIZATION
+r=1; //this is an assumption
+r1=r*1; //in Ohms
+r2=r*2; //in Ohms
+r3=r*3; //in Ohms
+
+//SOLUTION
+req=(r1*r2)+(r2*r3)+(r3*r1); //'req' is the equivalent resistance that appears in the numerator of the equation of star-delta conversion
+ra=req/r3;
+rb=req/r1;
+rc=req/r2;
+disp(sprintf("The equivalent delta values are ra=( %.2f x r) Ω, rb=( %.2f x r) Ω and rc=( %.2f x r) Ω",ra,rb,rc));
+
+//END
+
diff --git a/1445/CH1/EX1.57/Ex1_57.sce b/1445/CH1/EX1.57/Ex1_57.sce
new file mode 100644
index 000000000..7c117b894
--- /dev/null
+++ b/1445/CH1/EX1.57/Ex1_57.sce
@@ -0,0 +1,33 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 57
+
+disp("CHAPTER 1");
+disp("EXAMPLE 57");
+
+//VARIABLE INITIALIZATION
+v=10; //voltage source in Ohms
+r1=2; //RHS resistance in Ohms
+r2=2; //in Ohms
+r3=4; //in Ohms
+r4=4; //in Ohms
+I=20; //current source in Amperes
+
+//SOLUTION
+
+r=r1+r2;
+//deactivating voltage source of 10Ω
+v1=-I/((1/r)+(1/r3)+(1/r4)); //from equation
+I1=v1/r3;
+
+//deactivating current source of 20A
+v2=(v/r)/((1/r)+(1/r3)+(1/r4));
+I2=v2/r3;
+
+I_tot=I1+I2;
+if(I_tot>0)
+disp(sprintf("The value of I is %.2f A (upward)",I_tot));
+else
+disp(sprintf("The value of I is %.2f A (downward)",-I_tot));
+
+//END
+
diff --git a/1445/CH1/EX1.58/Ex1_58.sce b/1445/CH1/EX1.58/Ex1_58.sce
new file mode 100644
index 000000000..f077490a3
--- /dev/null
+++ b/1445/CH1/EX1.58/Ex1_58.sce
@@ -0,0 +1,35 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 58
+
+disp("CHAPTER 1");
+disp("EXAMPLE 58");
+
+//VARIABLE INITIALIZATION
+v1=20; //LHS voltage source in Volts
+v2=5; //RHS voltage source in Volts
+r1=100; //LHS resistance in Ohms
+r2=2; //in Ohms
+r3=1; //in Ohms
+r4=4; //in Ohms
+r5=1; //RHS resistance in Ohms
+
+//SOLUTION
+
+//applying Thevenin's Theorem
+//Thevnin's equivalent resistance, r_th is same as r_AB
+r_th=((r3+r5)*r2)/((r3+r5)+r2);
+v_th=(v1-v2)/2; //from the equation
+I1=v_th/(r4+r_th);
+v1=I1*r4;
+disp(sprintf("By Thevenin Theorem, the value of V is %d V",v1));
+
+//applying Norton's Theorem
+//Norton's equivalent resistance, r_n is same as r_AB
+r_n=((r3+r5)*r2)/((r3+r5)+r2);
+I_n=(v1-v2)/r2; //since v_A=0
+I2=r_n*(I_n/(r4+r_n));
+v2=I2*r4;
+disp(sprintf("By Norton Theorem, the value of V is %d V",v2));
+
+//END
+
diff --git a/1445/CH1/EX1.59/Ex1_59.sce b/1445/CH1/EX1.59/Ex1_59.sce
new file mode 100644
index 000000000..39e9ba594
--- /dev/null
+++ b/1445/CH1/EX1.59/Ex1_59.sce
@@ -0,0 +1,23 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 59
+
+disp("CHAPTER 1");
+disp("EXAMPLE 59");
+
+//SOLUTION
+
+//I1+I2=20...............eq (1)
+//-I1+I2=10..............eq (2)
+//solving the simultaneous equations by matrix method
+
+A=[1 1;-1 1];
+b=[20;10];
+I=inv(A)*b;
+I1=I(1,:); //to access 1st element of 2X1 matrix
+I2=I(2,:); //to access 2nd element of 2X1 matrix
+disp(sprintf("Current I1= %d A",I1));
+disp(sprintf("Current I2= %d A",I2));
+
+//END
+
+
diff --git a/1445/CH1/EX1.6/Ex1_6.sce b/1445/CH1/EX1.6/Ex1_6.sce
new file mode 100644
index 000000000..f5e6536c4
--- /dev/null
+++ b/1445/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,27 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 6
+
+disp("CHAPTER 1");
+disp("EXAMPLE 6");
+
+//VARIABLE INITIALIZATION
+n=4; //number of nodes
+b=6; //number of branches
+
+//SOLUTION
+m=b-n+1; //number of mesh equations
+disp(sprintf("Number of mesh equations are %d",m));
+nd=n-1; //number of node equations
+disp(sprintf("Number of node equations are %d",nd));
+
+//(5/2)I1+(-2)I2+(-1/2)I3=4.....eq (1)
+//(0)I1+(0)I2+(1)I3=-2..........eq (2)
+//(-2)I1+(10/3)I2+(-1/3)I3=0....eq (3)
+//using matrix method to solve the set of equations
+A=[5/2 -2 -1/2;-2 10/3 -1/3;0 0 1];
+b=[4;0;-2];
+x=inv(A)*b;
+I=x(1,:); //to access the 1st element of 3X1 matrix
+disp(sprintf("The current from the source Vs is %d A",I));
+
+//END
diff --git a/1445/CH1/EX1.7/Ex1_7.sce b/1445/CH1/EX1.7/Ex1_7.sce
new file mode 100644
index 000000000..0d1f19f9b
--- /dev/null
+++ b/1445/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,43 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 7
+
+disp("CHAPTER 1");
+disp("EXAMPLE 7");
+
+//VARIABLE INITIALIZATION
+I1=1; //current source in Amperes
+v1=4; //voltage source in Volts
+v2=3; //voltage source in Volts
+v3=6; //voltage source in Volts
+r1=2; //resistance in Ohms
+r2=2; //resistance in Ohms
+r3=1; //resistance in Ohms
+r4=3; //resistance in Ohms
+
+//SOLUTION
+//converting all the voltage sources into current sources
+I2=v1/r1;
+I3=v2/r3;
+I4=v3/r4;
+disp(sprintf("The four current sources are %d A, %d A, %d A and %d A",I1,I2,I3,I4));
+
+req1=(r1*r2)/(r1+r2); //parallel combination of resistors
+req2=(r3*r4)/(r3+r4);
+v2=(I1+I4)*req1;
+v3=(I3-I2)*req2;
+req=req1+req2;
+v=v2+v3;
+I=v/req;
+disp("VOLTAGE EQUIVALENT CIRCUIT:");
+disp(sprintf(" Voltage source= %.2f V",v));
+disp(sprintf(" Equivalent resistance(in series)= %.2f Ω",req));
+disp("CURRENT EQUIVALENT CIRCUIT:");
+disp(sprintf(" Current source= %.2f A",I));
+disp(sprintf(" Equivalent resistance(in parallel)= %.2f Ω",req));
+
+//END
+
+
+
+
+
diff --git a/1445/CH1/EX1.8/Ex1_8.sce b/1445/CH1/EX1.8/Ex1_8.sce
new file mode 100644
index 000000000..5f83da65a
--- /dev/null
+++ b/1445/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,26 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 8
+
+disp("CHAPTER 1");
+disp("EXAMPLE 8");
+
+//VARIABLE INITIALIZATION
+I=2; //current source in Amperes
+r1=1/2; //in Ohms
+r2=1/2; //in Ohms
+
+//SOLUTION
+//the current source of 2A is converted into two 1V sources
+v1=I*r1;
+v2=I*r2;
+disp(sprintf("The voltage sources after conversion are %d V and %d V",v1,v2));
+//(5/2)I1+(-1)I2=0........eq (1) //applying KVL in mesh 1
+//(-1)I1+(7/2)I2=2........eq (2) //applying KVL in mesh 2
+//using matrix method to solve the set of equations
+A=[5/2 -1;-1 7/2];
+b=[2;2];
+x=inv(A)*b;
+x=x(2,:);
+disp(sprintf("The current in 2Ω resistor is %.2f A",x));
+
+//END
diff --git a/1445/CH1/EX1.9/Ex1_9.sce b/1445/CH1/EX1.9/Ex1_9.sce
new file mode 100644
index 000000000..8e91926d2
--- /dev/null
+++ b/1445/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,32 @@
+//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
+//Example 9
+
+disp("CHAPTER 1");
+disp("EXAMPLE 9");
+
+//VARIABLE INITIALIZATION
+r1=1; //in Ohms
+r2=2; //in Ohms
+r3=3; //in Ohms
+r4=1; //in Ohms
+
+//SOLUTION
+
+//delta values
+rab=r1; //between points a and b
+rac=r2; //between points a and c
+rbc=r3; //between points b and c
+//coverting delta abc into star with points a, b and c
+//star values ra, rb and rc
+r=rab+rbc+rac; //'r' is the resistance that appears in the denominator of the equation of delta-star conversion
+ra=(rab*rac)/r;
+rb=(rab*rbc)/r;
+rc=(rbc*rac)/r;
+req1=r1+r4;
+req2=rb+r2;
+req3=(req1*req2)/(req1+req2);
+req4=ra+req3;
+disp(sprintf("The equivalent input resistance is %.2f Ω",req4));
+
+//END
+