summaryrefslogtreecommitdiff
path: root/1445/CH10
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH10')
-rw-r--r--1445/CH10/EX10.10/Ex10_10.sce3
-rw-r--r--1445/CH10/EX10.11/Ex10_11.sce3
-rw-r--r--1445/CH10/EX10.12/Ex10_12.sce7
-rw-r--r--1445/CH10/EX10.13/Ex10_13.sce11
-rw-r--r--1445/CH10/EX10.14/Ex10_14.sce20
-rw-r--r--1445/CH10/EX10.15/Ex10_15.sce4
-rw-r--r--1445/CH10/EX10.16/Ex10_16.sce11
-rw-r--r--1445/CH10/EX10.2/Ex10_2.sce9
-rw-r--r--1445/CH10/EX10.3/Ex10_3.sce5
-rw-r--r--1445/CH10/EX10.4/Ex10_4.sce7
-rw-r--r--1445/CH10/EX10.5/Ex10_5.sce1
-rw-r--r--1445/CH10/EX10.6/Ex10_6.sce3
-rw-r--r--1445/CH10/EX10.7/Ex10_7.sce13
-rw-r--r--1445/CH10/EX10.8/Ex10_8.sce3
-rw-r--r--1445/CH10/EX10.9/Ex10_9.sce5
15 files changed, 59 insertions, 46 deletions
diff --git a/1445/CH10/EX10.10/Ex10_10.sce b/1445/CH10/EX10.10/Ex10_10.sce
index ce3fc1915..ceb1ab464 100644
--- a/1445/CH10/EX10.10/Ex10_10.sce
+++ b/1445/CH10/EX10.10/Ex10_10.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 10
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 10");
@@ -20,7 +21,7 @@ p_g=p-(cu_loss+cr_loss); //rotor input
p_m=p_g*(1-s); //output mechanical power
p_sh=p_m-me_loss; //shaft power
eff=p_sh/p;
-disp(sprintf("The motor efficiency is %.2f %%",eff*100));
+disp(sprintf("The motor efficiency is %f %%",eff*100));
//END
diff --git a/1445/CH10/EX10.11/Ex10_11.sce b/1445/CH10/EX10.11/Ex10_11.sce
index 143337fe8..70e926ccb 100644
--- a/1445/CH10/EX10.11/Ex10_11.sce
+++ b/1445/CH10/EX10.11/Ex10_11.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 11
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 11");
@@ -18,7 +19,7 @@ N_r=round(N_r); //to round off the value
disp(sprintf("(a) The speed of the motor is %d rpm",N_r));
//solution (b)
-P2=6; // number of poles
+P2=6;
N_s=(120*f)/P2; //synchronous speed of generator in rpm with six poles
disp(sprintf("(b) The speed of the generator is %d rpm",N_s));
diff --git a/1445/CH10/EX10.12/Ex10_12.sce b/1445/CH10/EX10.12/Ex10_12.sce
index 8ea258656..f9e2b16d1 100644
--- a/1445/CH10/EX10.12/Ex10_12.sce
+++ b/1445/CH10/EX10.12/Ex10_12.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 12
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 12");
@@ -15,18 +16,18 @@ pow_fact=0.8; //full load power factor
//solution (a)
I_fl1=I/5; //starting current at rated voltage is 5 times the rated full-load current
p1=sqrt(3)*v*I_fl1*pow_fact*eff;
-disp(sprintf("(a) The maximum permissible kW rating when the motor when it starts at full voltage is %.3f kW",p1/1000));
+disp(sprintf("(a) The maximum permissible kW rating when the motor when it starts at full voltage is %f kW",p1/1000));
//solution (b)
x=0.8; //voltage is stepped down to 80%
I_fl2=I/((x^2)*5);
p2=sqrt(3)*v*I_fl2*pow_fact*eff;
-disp(sprintf("(b) The maximum permissible kW rating when the motor is used with an auto-transformer is %.3f kW",p2/1000));
+disp(sprintf("(b) The maximum permissible kW rating when the motor is used with an auto-transformer is %f kW",p2/1000));
//solution (c)
I_fl3=I/((0.578^2)*5); //since a star-delta is equivalent to an auto-transformer starter with 57.8% tapping
p3=sqrt(3)*v*I_fl3*pow_fact*eff;
-disp(sprintf("(c) The maximum permissible kW rating when the motor is used with star-delta starter is %.3f kW",p3/1000));
+disp(sprintf("(c) The maximum permissible kW rating when the motor is used with star-delta starter is %f kW",p3/1000));
//The answers are slightly different due to precision of floating point numbers
diff --git a/1445/CH10/EX10.13/Ex10_13.sce b/1445/CH10/EX10.13/Ex10_13.sce
index bdac5ae63..188282fe6 100644
--- a/1445/CH10/EX10.13/Ex10_13.sce
+++ b/1445/CH10/EX10.13/Ex10_13.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 13
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 13");
@@ -40,21 +41,21 @@ end;
//solution (b)
s=(N_s1-N_r)/N_s1;
f_r=s*f;
-disp(sprintf("(b) The slip is %.2f %% and rotor frequency is %d Hz",s*100,f_r));
+disp(sprintf("(b) The slip is %f %% and rotor frequency is %d Hz",s*100,f_r));
//solution (c)
w1=(2*%pi*N_s1)/60;
-disp(sprintf("(c(i)) The speed of stator field w.r.t. stator structure is %.3f rad/s",w1)); //Answer given in the book is wrong
+disp(sprintf("(c(i)) The speed of stator field w.r.t. stator structure is %f rad/s",w1)); //Answer given in the book is wrong
N_s2=N_s1-N_r;
w2=(2*%pi*N_s2)/60;
-disp(sprintf("(c(ii)) The speed of stator field w.r.t. rotor structure is %.3f rad/s",w2));
+disp(sprintf("(c(ii)) The speed of stator field w.r.t. rotor structure is %f rad/s",w2));
//solution (d)
factor=(2*%pi)/60; //converting rpm to radian/second
N_r1=(120*f_r)/P;
-disp(sprintf("(d(i)) The speed of rotor field w.r.t. rotor structure is %.3f rad/s",N_r1*factor));
+disp(sprintf("(d(i)) The speed of rotor field w.r.t. rotor structure is %f rad/s",N_r1*factor));
N_r2=N_r+N_r1;
-disp(sprintf("(d(ii)) The speed of rotor field w.r.t. stator structure is %.3f rad/s",N_r2*factor));
+disp(sprintf("(d(ii)) The speed of rotor field w.r.t. stator structure is %f rad/s",N_r2*factor));
N_r3=N_s1-N_r2;
disp(sprintf("(d(iii)) The speed of rotor field w.r.t. stator structure is %d rad/s",N_r3));
diff --git a/1445/CH10/EX10.14/Ex10_14.sce b/1445/CH10/EX10.14/Ex10_14.sce
index 374233cc2..3bed8ce66 100644
--- a/1445/CH10/EX10.14/Ex10_14.sce
+++ b/1445/CH10/EX10.14/Ex10_14.sce
@@ -1,6 +1,8 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 14
+clc;
+clear
disp("CHAPTER 10");
disp("EXAMPLE 14");
@@ -19,34 +21,34 @@ loss=420; //friction and winding loss in Watts
I1=I_nl/sqrt(3); //phase current=(line current)/sqrt(3) for delta connection
i_sq_r1=(I1^2)*r*3; //stator ((I^2)*R) loss at no load; since resistance is given in per phase, 3 needs to be multiplied for 3-phase
s_loss=(p_ni-loss)-(i_sq_r1);
-disp(sprintf("(a) The stator core loss is %.1f W",s_loss));
+disp(sprintf("(a) The stator core loss is %f W",s_loss));
//solution (b)
I2=I_fl/sqrt(3);
i_sq_r2=(I2^2)*r*3;
p_g=p_fi-s_loss-i_sq_r2; //air-gap power at full load
r_loss=p_g-p;
-disp(sprintf("(b) The total rotor loss at full load is %.0f W",r_loss));
+disp(sprintf("(b) The total rotor loss at full load is %f W",r_loss));
//solution (c)
o_loss=r_loss-loss;
-disp(sprintf("(c) The total rotor ohmic loss at full load is %.0f W",o_loss));
+disp(sprintf("(c) The total rotor ohmic loss at full load is %f W",o_loss));
//solution (d)
s_fl=o_loss/p_g; //full load slip
N_s=1500;
N_r=N_s*(1-s_fl);
-disp(sprintf("(d) The full load speed is %.1f rpm",N_r));
+disp(sprintf("(d) The full load speed is %f rpm",N_r));
//solution (e)
w=(2*%pi*N_s)/60;
T_e=p_g/w;
-disp(sprintf("(e) The internal torque is %.2f N-m",T_e));
-T_sh=p/(w*(1-s));
-disp(sprintf(" The shaft torque is %.2f N-m",T_sh));
+disp(sprintf("(e) The internal torque is %f N-m",T_e));
+T_sh=p/(w*(1-s_fl));
+disp(sprintf(" The shaft torque is %f N-m",T_sh));
eff=p/p_fi;
-disp(sprintf(" The motor efficiency is %.2f %%",eff*100));
+disp(sprintf(" The motor efficiency is %f %%",eff*100));
//The answers may be slightly different due to precision of floating point numbers
-//END
+//END \ No newline at end of file
diff --git a/1445/CH10/EX10.15/Ex10_15.sce b/1445/CH10/EX10.15/Ex10_15.sce
index 71d762cc7..a4fe2370a 100644
--- a/1445/CH10/EX10.15/Ex10_15.sce
+++ b/1445/CH10/EX10.15/Ex10_15.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 15
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 15");
@@ -27,9 +28,6 @@ ratio=s1/s2; //all other parameters in the expressions of th
disp(sprintf("(b) The ratio of the two voltages at the two speeds is %d",ratio));
//solution (c)
-//for rotor speed N_r=900 rpm clockwise, the stator field is running at 600 rpm clockwise. The phase sequence be abc
-//for rotor speed N_r=2100 rpm clockwise, the stator field is running at 600 rpm anticlockwise. The phase sequence be acb
-//Therefore, the phase sequence is reversed.
disp("(c) The poles sequence of -3Φ rotor voltage do not remain the same");
//END
diff --git a/1445/CH10/EX10.16/Ex10_16.sce b/1445/CH10/EX10.16/Ex10_16.sce
index 6328912eb..0ace23044 100644
--- a/1445/CH10/EX10.16/Ex10_16.sce
+++ b/1445/CH10/EX10.16/Ex10_16.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 16
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 16");
@@ -23,9 +24,9 @@ sm2=(-b-sqrt(D))/(2*a);
if(sm1<=0 & sm2<=0) then
disp("The value of the slip at maximum torque (maximum slip) is not valid");
else if(sm1>0 & sm1<1)
-disp(sprintf("The slip at maximum torque (maximum slip) is %.3f",sm1)); //slip is a unitless quantity
+disp(sprintf("The slip at maximum torque (maximum slip) is %f",sm1)); //slip is a unitless quantity
else if(sm2>0 & sm2<1)
-disp(sprintf("The slip at maximum torque (maximum slip) is %.4f",sm2));
+disp(sprintf("The slip at maximum torque (maximum slip) is %f",sm2));
end;
//solution (b) (taking the ratio of T_efl and T_em)
@@ -37,15 +38,15 @@ D=(b)^2-(4*a*c);
ans1=(-b+sqrt(D))/(2*a);
ans2=(-b-sqrt(D))/(2*a);
if(ans1>0 & ans1<1)
-disp(sprintf("The full load slip is %.3f",ans1));
+disp(sprintf("The full load slip is %f",ans1));
sfl=ans1;
else if(ans2>0 & ans2<1)
-disp(sprintf("The full load slip is %.3f",ans2));
+disp(sprintf("The full load slip is %f",ans2));
sfl=ans2;
end;
//solution (c)
I=sqrt(ratio1/sfl);
-disp(sprintf("The rotor current at the starting in terms of full load current is %.3f A",I));
+disp(sprintf("The rotor current at the starting in terms of full load current is %f A",I));
//END
diff --git a/1445/CH10/EX10.2/Ex10_2.sce b/1445/CH10/EX10.2/Ex10_2.sce
index 9d0e9a7d8..996cb1de9 100644
--- a/1445/CH10/EX10.2/Ex10_2.sce
+++ b/1445/CH10/EX10.2/Ex10_2.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 2
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 2");
@@ -16,7 +17,7 @@ s1=(N_s-N_r1)/N_s; //slip at full load
//solution (a)
N_r2=0; //rotor speed at standstill is zero
s2=(N_s-N_r2)/N_s;
-disp(sprintf("(a) At standstill, the slip is %.2f %%",s2*100));
+disp(sprintf("(a) At standstill, the slip is %f %%",s2*100));
if(s2>1)
disp("Since the slip is greater than 100%, the motor operates as brake");
end;
@@ -32,7 +33,7 @@ end;
//solution (b)
N_r3=500;
s3=(N_s-N_r3)/N_s;
-disp(sprintf("(b) At %d rpm, the slip is %.2f %%",N_r3,s3*100));
+disp(sprintf("(b) At %d rpm, the slip is %f %%",N_r3,s3*100));
if(s3>1)
disp("Since the slip is greater than 100%, the motor operates as brake");
end;
@@ -48,7 +49,7 @@ end;
//solution (c)
N_r4=500;
s4=(N_s+N_r4)/N_s; //as motor runs in opposite direction
-disp(sprintf("(c) At %d rpm, the slip is %.3f %%",N_r4,s4*100));
+disp(sprintf("(c) At %d rpm, the slip is %f %%",N_r4,s4*100));
if(s4>1)
disp("Since the slip is greater than 100%, the motor operates as brake");
end;
@@ -64,7 +65,7 @@ end;
//solution (d)
N_r5=2000;
s5=(N_s-N_r5)/N_s;
-disp(sprintf("(d) At %d rpm, the slip is %.3f %%",N_r5,s5*100));
+disp(sprintf("(d) At %d rpm, the slip is %f %%",N_r5,s5*100));
if(s5>1)
disp("Since the slip is greater than 100%, the motor operates as brake");
end;
diff --git a/1445/CH10/EX10.3/Ex10_3.sce b/1445/CH10/EX10.3/Ex10_3.sce
index 5473f2615..d29fc922d 100644
--- a/1445/CH10/EX10.3/Ex10_3.sce
+++ b/1445/CH10/EX10.3/Ex10_3.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 3
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 3");
@@ -42,14 +43,14 @@ N_r=round(N_r);
disp(sprintf("(vi) The speed of rotor at 10%% slip is %d rpm",N_r));
s1=(N_s-N_r)/N_s;
fr=s1*f;
-disp(sprintf(" The rotor frequency at this speed is %.0f Hz",fr));
+disp(sprintf(" The rotor frequency at this speed is %f Hz",fr));
//solution (vii)
v=230;
ratio1=1/0.5; //stator to rotor turns ratio
E_rotor=v*(1/ratio1);
E_rotor_dash=ratio*E_rotor;
-disp(sprintf("(vii) The rotor induced emf is %.1f V",E_rotor_dash));
+disp(sprintf("(vii) The rotor induced emf is %f V",E_rotor_dash));
//END
diff --git a/1445/CH10/EX10.4/Ex10_4.sce b/1445/CH10/EX10.4/Ex10_4.sce
index dc5a845d9..32c7b2eba 100644
--- a/1445/CH10/EX10.4/Ex10_4.sce
+++ b/1445/CH10/EX10.4/Ex10_4.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 4
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 4");
@@ -15,15 +16,15 @@ s_m=r2/X2;
s=1;
ratio1=2/((s/s_m)+(s_m/s)); //ratio of T_starting and T_max
ratio2=2*ratio1; //ratio of T_starting and T_full-load (T_max=2*T_full-load)
-disp(sprintf("(a) If the motor is started by direct-on-line starter, the ratio of starting torque to full load torque is %.3f",ratio2));
+disp(sprintf("(a) If the motor is started by direct-on-line starter, the ratio of starting torque to full load torque is %f",ratio2));
//solution (b)
ratio3=(1/3)*ratio2; //In star-delta starter, T_starting=(1/3)*T_starting_of_DOL
-disp(sprintf("(b) If the motor is started by star-delta starter, the ratio of starting torque to full load torque is %.4f",ratio3));
+disp(sprintf("(b) If the motor is started by star-delta starter, the ratio of starting torque to full load torque is %f",ratio3));
//solution (c)
ratio4=0.7*2*ratio2; //due to 70% tapping
-disp(sprintf("(c) If the motor is started by auto-transformer, the ratio of starting torque to full load torque is %.4f",ratio4));
+disp(sprintf("(c) If the motor is started by auto-transformer, the ratio of starting torque to full load torque is %f",ratio4));
//END
diff --git a/1445/CH10/EX10.5/Ex10_5.sce b/1445/CH10/EX10.5/Ex10_5.sce
index cb2d70200..e1fbc950e 100644
--- a/1445/CH10/EX10.5/Ex10_5.sce
+++ b/1445/CH10/EX10.5/Ex10_5.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 5
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 5");
diff --git a/1445/CH10/EX10.6/Ex10_6.sce b/1445/CH10/EX10.6/Ex10_6.sce
index fb2412441..d5950b263 100644
--- a/1445/CH10/EX10.6/Ex10_6.sce
+++ b/1445/CH10/EX10.6/Ex10_6.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 6
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 6");
@@ -20,7 +21,7 @@ disp(sprintf("The speed of the motor is %d rpm",N_r));
E_s=E/sqrt(3); //phase voltage=(line voltage)/sqrt(3) for star connection
E_r=E_s*(1/ratio);
E_r_dash=s*E_r;
-disp(sprintf("The rotor induced emf above 2 Hz is %.3f V per phase",E_r_dash)); //Answer given in the book is wrong
+disp(sprintf("The rotor induced emf above 2 Hz is %f V per phase",E_r_dash)); //Answer given in the book is wrong
//END
diff --git a/1445/CH10/EX10.7/Ex10_7.sce b/1445/CH10/EX10.7/Ex10_7.sce
index 0e53dbb1b..80126f52d 100644
--- a/1445/CH10/EX10.7/Ex10_7.sce
+++ b/1445/CH10/EX10.7/Ex10_7.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 7
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 7");
@@ -17,26 +18,26 @@ N_r=1460; //full load speed in rpm
//solution (i)
N_s=(120*f)/P;
s_fl=(N_s-N_r)/N_s;
-disp(sprintf("(i) The slip at full load is %.2f %%",s_fl*100));
+disp(sprintf("(i) The slip at full load is %f %%",s_fl*100));
s_m=r2/X2;
-disp(sprintf("The slip at which maximum torque occurs is %.0f %%",s_m*100));
+disp(sprintf("The slip at which maximum torque occurs is %f %%",s_m*100));
//solution (ii)
E2=E1/sqrt(3); //phase voltage=(line voltage)/sqrt(3) for star connection
-disp(sprintf("(ii) The emf induced in rotor is %.1f V per phase",E2));
+disp(sprintf("(ii) The emf induced in rotor is %f V per phase",E2));
//solution (iii)
X2_dash=s_fl*X2;
-disp(sprintf("(iii) The rotor reactance per phase is %.4f Ω",X2_dash));
+disp(sprintf("(iii) The rotor reactance per phase is %f Ω",X2_dash));
//solution (iv)
z=sqrt((r2^2)+(X2_dash)^2);
I2=(s_fl*E2)/z;
-disp(sprintf("(iv) The rotor current is %.2f A",I2));
+disp(sprintf("(iv) The rotor current is %f A",I2));
//solution (v)
pow_fact_r=r2/z;
-disp(sprintf("(v) The rotor power factor is %.3f (lagging)",pow_fact_r));
+disp(sprintf("(v) The rotor power factor is %f (lagging)",pow_fact_r));
//END
diff --git a/1445/CH10/EX10.8/Ex10_8.sce b/1445/CH10/EX10.8/Ex10_8.sce
index f324e51a5..f0d05ddf7 100644
--- a/1445/CH10/EX10.8/Ex10_8.sce
+++ b/1445/CH10/EX10.8/Ex10_8.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 8
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 8");
@@ -32,6 +33,6 @@ disp(sprintf("(d) The mechanical power developed to load is %d kW",p_shaft));
//solution (e)
eff=p_shaft/p_in;
-disp(sprintf("(e) The efficiency of the motor is %.2f %%",eff*100));
+disp(sprintf("(e) The efficiency of the motor is %f %%",eff*100));
//END
diff --git a/1445/CH10/EX10.9/Ex10_9.sce b/1445/CH10/EX10.9/Ex10_9.sce
index 71a074562..9bf730d70 100644
--- a/1445/CH10/EX10.9/Ex10_9.sce
+++ b/1445/CH10/EX10.9/Ex10_9.sce
@@ -1,6 +1,7 @@
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 9
+clc;
disp("CHAPTER 10");
disp("EXAMPLE 9");
@@ -25,7 +26,7 @@ I_s=I2/ratio; //stator current
N_s=(120*f)/P;
w=(2*%pi*N_s)/60;
T_s1=(3*E2^2*r2)/(w*z1^2);
-disp(sprintf("(a) The starting current is %.1f A and torque is %.0f N-m",I_s,T_s1));
+disp(sprintf("(a) The starting current is %f A and torque is %f N-m",I_s,T_s1));
//solution (b)
I_s1=30;
@@ -34,7 +35,7 @@ r=sqrt(((E2/I_r)^2)-(X2^2));
r_ext=r-r2;
z2=sqrt((r_ext^2)+(X2^2));
T_s2=(3*E2^2*r)/(w*z2^2);
-disp(sprintf("(b) The external resistance is %.2f Ω and torque is %.2f N-m",r_ext,T_s2));
+disp(sprintf("(b) The external resistance is %f Ω and torque is %f N-m",r_ext,T_s2));
//There answers are different due to precision of floating point numbers