diff options
Diffstat (limited to '1445/CH10')
-rw-r--r-- | 1445/CH10/EX10.10/Ex10_10.sce | 3 | ||||
-rw-r--r-- | 1445/CH10/EX10.11/Ex10_11.sce | 3 | ||||
-rw-r--r-- | 1445/CH10/EX10.12/Ex10_12.sce | 7 | ||||
-rw-r--r-- | 1445/CH10/EX10.13/Ex10_13.sce | 11 | ||||
-rw-r--r-- | 1445/CH10/EX10.14/Ex10_14.sce | 20 | ||||
-rw-r--r-- | 1445/CH10/EX10.15/Ex10_15.sce | 4 | ||||
-rw-r--r-- | 1445/CH10/EX10.16/Ex10_16.sce | 11 | ||||
-rw-r--r-- | 1445/CH10/EX10.2/Ex10_2.sce | 9 | ||||
-rw-r--r-- | 1445/CH10/EX10.3/Ex10_3.sce | 5 | ||||
-rw-r--r-- | 1445/CH10/EX10.4/Ex10_4.sce | 7 | ||||
-rw-r--r-- | 1445/CH10/EX10.5/Ex10_5.sce | 1 | ||||
-rw-r--r-- | 1445/CH10/EX10.6/Ex10_6.sce | 3 | ||||
-rw-r--r-- | 1445/CH10/EX10.7/Ex10_7.sce | 13 | ||||
-rw-r--r-- | 1445/CH10/EX10.8/Ex10_8.sce | 3 | ||||
-rw-r--r-- | 1445/CH10/EX10.9/Ex10_9.sce | 5 |
15 files changed, 59 insertions, 46 deletions
diff --git a/1445/CH10/EX10.10/Ex10_10.sce b/1445/CH10/EX10.10/Ex10_10.sce index ce3fc1915..ceb1ab464 100644 --- a/1445/CH10/EX10.10/Ex10_10.sce +++ b/1445/CH10/EX10.10/Ex10_10.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 10 +clc; disp("CHAPTER 10"); disp("EXAMPLE 10"); @@ -20,7 +21,7 @@ p_g=p-(cu_loss+cr_loss); //rotor input p_m=p_g*(1-s); //output mechanical power p_sh=p_m-me_loss; //shaft power eff=p_sh/p; -disp(sprintf("The motor efficiency is %.2f %%",eff*100)); +disp(sprintf("The motor efficiency is %f %%",eff*100)); //END diff --git a/1445/CH10/EX10.11/Ex10_11.sce b/1445/CH10/EX10.11/Ex10_11.sce index 143337fe8..70e926ccb 100644 --- a/1445/CH10/EX10.11/Ex10_11.sce +++ b/1445/CH10/EX10.11/Ex10_11.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 11 +clc; disp("CHAPTER 10"); disp("EXAMPLE 11"); @@ -18,7 +19,7 @@ N_r=round(N_r); //to round off the value disp(sprintf("(a) The speed of the motor is %d rpm",N_r)); //solution (b) -P2=6; // number of poles +P2=6; N_s=(120*f)/P2; //synchronous speed of generator in rpm with six poles disp(sprintf("(b) The speed of the generator is %d rpm",N_s)); diff --git a/1445/CH10/EX10.12/Ex10_12.sce b/1445/CH10/EX10.12/Ex10_12.sce index 8ea258656..f9e2b16d1 100644 --- a/1445/CH10/EX10.12/Ex10_12.sce +++ b/1445/CH10/EX10.12/Ex10_12.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 12 +clc; disp("CHAPTER 10"); disp("EXAMPLE 12"); @@ -15,18 +16,18 @@ pow_fact=0.8; //full load power factor //solution (a) I_fl1=I/5; //starting current at rated voltage is 5 times the rated full-load current p1=sqrt(3)*v*I_fl1*pow_fact*eff; -disp(sprintf("(a) The maximum permissible kW rating when the motor when it starts at full voltage is %.3f kW",p1/1000)); +disp(sprintf("(a) The maximum permissible kW rating when the motor when it starts at full voltage is %f kW",p1/1000)); //solution (b) x=0.8; //voltage is stepped down to 80% I_fl2=I/((x^2)*5); p2=sqrt(3)*v*I_fl2*pow_fact*eff; -disp(sprintf("(b) The maximum permissible kW rating when the motor is used with an auto-transformer is %.3f kW",p2/1000)); +disp(sprintf("(b) The maximum permissible kW rating when the motor is used with an auto-transformer is %f kW",p2/1000)); //solution (c) I_fl3=I/((0.578^2)*5); //since a star-delta is equivalent to an auto-transformer starter with 57.8% tapping p3=sqrt(3)*v*I_fl3*pow_fact*eff; -disp(sprintf("(c) The maximum permissible kW rating when the motor is used with star-delta starter is %.3f kW",p3/1000)); +disp(sprintf("(c) The maximum permissible kW rating when the motor is used with star-delta starter is %f kW",p3/1000)); //The answers are slightly different due to precision of floating point numbers diff --git a/1445/CH10/EX10.13/Ex10_13.sce b/1445/CH10/EX10.13/Ex10_13.sce index bdac5ae63..188282fe6 100644 --- a/1445/CH10/EX10.13/Ex10_13.sce +++ b/1445/CH10/EX10.13/Ex10_13.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 13 +clc; disp("CHAPTER 10"); disp("EXAMPLE 13"); @@ -40,21 +41,21 @@ end; //solution (b) s=(N_s1-N_r)/N_s1; f_r=s*f; -disp(sprintf("(b) The slip is %.2f %% and rotor frequency is %d Hz",s*100,f_r)); +disp(sprintf("(b) The slip is %f %% and rotor frequency is %d Hz",s*100,f_r)); //solution (c) w1=(2*%pi*N_s1)/60; -disp(sprintf("(c(i)) The speed of stator field w.r.t. stator structure is %.3f rad/s",w1)); //Answer given in the book is wrong +disp(sprintf("(c(i)) The speed of stator field w.r.t. stator structure is %f rad/s",w1)); //Answer given in the book is wrong N_s2=N_s1-N_r; w2=(2*%pi*N_s2)/60; -disp(sprintf("(c(ii)) The speed of stator field w.r.t. rotor structure is %.3f rad/s",w2)); +disp(sprintf("(c(ii)) The speed of stator field w.r.t. rotor structure is %f rad/s",w2)); //solution (d) factor=(2*%pi)/60; //converting rpm to radian/second N_r1=(120*f_r)/P; -disp(sprintf("(d(i)) The speed of rotor field w.r.t. rotor structure is %.3f rad/s",N_r1*factor)); +disp(sprintf("(d(i)) The speed of rotor field w.r.t. rotor structure is %f rad/s",N_r1*factor)); N_r2=N_r+N_r1; -disp(sprintf("(d(ii)) The speed of rotor field w.r.t. stator structure is %.3f rad/s",N_r2*factor)); +disp(sprintf("(d(ii)) The speed of rotor field w.r.t. stator structure is %f rad/s",N_r2*factor)); N_r3=N_s1-N_r2; disp(sprintf("(d(iii)) The speed of rotor field w.r.t. stator structure is %d rad/s",N_r3)); diff --git a/1445/CH10/EX10.14/Ex10_14.sce b/1445/CH10/EX10.14/Ex10_14.sce index 374233cc2..3bed8ce66 100644 --- a/1445/CH10/EX10.14/Ex10_14.sce +++ b/1445/CH10/EX10.14/Ex10_14.sce @@ -1,6 +1,8 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 14 +clc; +clear disp("CHAPTER 10"); disp("EXAMPLE 14"); @@ -19,34 +21,34 @@ loss=420; //friction and winding loss in Watts I1=I_nl/sqrt(3); //phase current=(line current)/sqrt(3) for delta connection i_sq_r1=(I1^2)*r*3; //stator ((I^2)*R) loss at no load; since resistance is given in per phase, 3 needs to be multiplied for 3-phase s_loss=(p_ni-loss)-(i_sq_r1); -disp(sprintf("(a) The stator core loss is %.1f W",s_loss)); +disp(sprintf("(a) The stator core loss is %f W",s_loss)); //solution (b) I2=I_fl/sqrt(3); i_sq_r2=(I2^2)*r*3; p_g=p_fi-s_loss-i_sq_r2; //air-gap power at full load r_loss=p_g-p; -disp(sprintf("(b) The total rotor loss at full load is %.0f W",r_loss)); +disp(sprintf("(b) The total rotor loss at full load is %f W",r_loss)); //solution (c) o_loss=r_loss-loss; -disp(sprintf("(c) The total rotor ohmic loss at full load is %.0f W",o_loss)); +disp(sprintf("(c) The total rotor ohmic loss at full load is %f W",o_loss)); //solution (d) s_fl=o_loss/p_g; //full load slip N_s=1500; N_r=N_s*(1-s_fl); -disp(sprintf("(d) The full load speed is %.1f rpm",N_r)); +disp(sprintf("(d) The full load speed is %f rpm",N_r)); //solution (e) w=(2*%pi*N_s)/60; T_e=p_g/w; -disp(sprintf("(e) The internal torque is %.2f N-m",T_e)); -T_sh=p/(w*(1-s)); -disp(sprintf(" The shaft torque is %.2f N-m",T_sh)); +disp(sprintf("(e) The internal torque is %f N-m",T_e)); +T_sh=p/(w*(1-s_fl)); +disp(sprintf(" The shaft torque is %f N-m",T_sh)); eff=p/p_fi; -disp(sprintf(" The motor efficiency is %.2f %%",eff*100)); +disp(sprintf(" The motor efficiency is %f %%",eff*100)); //The answers may be slightly different due to precision of floating point numbers -//END +//END
\ No newline at end of file diff --git a/1445/CH10/EX10.15/Ex10_15.sce b/1445/CH10/EX10.15/Ex10_15.sce index 71d762cc7..a4fe2370a 100644 --- a/1445/CH10/EX10.15/Ex10_15.sce +++ b/1445/CH10/EX10.15/Ex10_15.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 15 +clc; disp("CHAPTER 10"); disp("EXAMPLE 15"); @@ -27,9 +28,6 @@ ratio=s1/s2; //all other parameters in the expressions of th disp(sprintf("(b) The ratio of the two voltages at the two speeds is %d",ratio)); //solution (c) -//for rotor speed N_r=900 rpm clockwise, the stator field is running at 600 rpm clockwise. The phase sequence be abc -//for rotor speed N_r=2100 rpm clockwise, the stator field is running at 600 rpm anticlockwise. The phase sequence be acb -//Therefore, the phase sequence is reversed. disp("(c) The poles sequence of -3Φ rotor voltage do not remain the same"); //END diff --git a/1445/CH10/EX10.16/Ex10_16.sce b/1445/CH10/EX10.16/Ex10_16.sce index 6328912eb..0ace23044 100644 --- a/1445/CH10/EX10.16/Ex10_16.sce +++ b/1445/CH10/EX10.16/Ex10_16.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 16 +clc; disp("CHAPTER 10"); disp("EXAMPLE 16"); @@ -23,9 +24,9 @@ sm2=(-b-sqrt(D))/(2*a); if(sm1<=0 & sm2<=0) then disp("The value of the slip at maximum torque (maximum slip) is not valid"); else if(sm1>0 & sm1<1) -disp(sprintf("The slip at maximum torque (maximum slip) is %.3f",sm1)); //slip is a unitless quantity +disp(sprintf("The slip at maximum torque (maximum slip) is %f",sm1)); //slip is a unitless quantity else if(sm2>0 & sm2<1) -disp(sprintf("The slip at maximum torque (maximum slip) is %.4f",sm2)); +disp(sprintf("The slip at maximum torque (maximum slip) is %f",sm2)); end; //solution (b) (taking the ratio of T_efl and T_em) @@ -37,15 +38,15 @@ D=(b)^2-(4*a*c); ans1=(-b+sqrt(D))/(2*a); ans2=(-b-sqrt(D))/(2*a); if(ans1>0 & ans1<1) -disp(sprintf("The full load slip is %.3f",ans1)); +disp(sprintf("The full load slip is %f",ans1)); sfl=ans1; else if(ans2>0 & ans2<1) -disp(sprintf("The full load slip is %.3f",ans2)); +disp(sprintf("The full load slip is %f",ans2)); sfl=ans2; end; //solution (c) I=sqrt(ratio1/sfl); -disp(sprintf("The rotor current at the starting in terms of full load current is %.3f A",I)); +disp(sprintf("The rotor current at the starting in terms of full load current is %f A",I)); //END diff --git a/1445/CH10/EX10.2/Ex10_2.sce b/1445/CH10/EX10.2/Ex10_2.sce index 9d0e9a7d8..996cb1de9 100644 --- a/1445/CH10/EX10.2/Ex10_2.sce +++ b/1445/CH10/EX10.2/Ex10_2.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 2 +clc; disp("CHAPTER 10"); disp("EXAMPLE 2"); @@ -16,7 +17,7 @@ s1=(N_s-N_r1)/N_s; //slip at full load //solution (a) N_r2=0; //rotor speed at standstill is zero s2=(N_s-N_r2)/N_s; -disp(sprintf("(a) At standstill, the slip is %.2f %%",s2*100)); +disp(sprintf("(a) At standstill, the slip is %f %%",s2*100)); if(s2>1) disp("Since the slip is greater than 100%, the motor operates as brake"); end; @@ -32,7 +33,7 @@ end; //solution (b) N_r3=500; s3=(N_s-N_r3)/N_s; -disp(sprintf("(b) At %d rpm, the slip is %.2f %%",N_r3,s3*100)); +disp(sprintf("(b) At %d rpm, the slip is %f %%",N_r3,s3*100)); if(s3>1) disp("Since the slip is greater than 100%, the motor operates as brake"); end; @@ -48,7 +49,7 @@ end; //solution (c) N_r4=500; s4=(N_s+N_r4)/N_s; //as motor runs in opposite direction -disp(sprintf("(c) At %d rpm, the slip is %.3f %%",N_r4,s4*100)); +disp(sprintf("(c) At %d rpm, the slip is %f %%",N_r4,s4*100)); if(s4>1) disp("Since the slip is greater than 100%, the motor operates as brake"); end; @@ -64,7 +65,7 @@ end; //solution (d) N_r5=2000; s5=(N_s-N_r5)/N_s; -disp(sprintf("(d) At %d rpm, the slip is %.3f %%",N_r5,s5*100)); +disp(sprintf("(d) At %d rpm, the slip is %f %%",N_r5,s5*100)); if(s5>1) disp("Since the slip is greater than 100%, the motor operates as brake"); end; diff --git a/1445/CH10/EX10.3/Ex10_3.sce b/1445/CH10/EX10.3/Ex10_3.sce index 5473f2615..d29fc922d 100644 --- a/1445/CH10/EX10.3/Ex10_3.sce +++ b/1445/CH10/EX10.3/Ex10_3.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 3 +clc; disp("CHAPTER 10"); disp("EXAMPLE 3"); @@ -42,14 +43,14 @@ N_r=round(N_r); disp(sprintf("(vi) The speed of rotor at 10%% slip is %d rpm",N_r)); s1=(N_s-N_r)/N_s; fr=s1*f; -disp(sprintf(" The rotor frequency at this speed is %.0f Hz",fr)); +disp(sprintf(" The rotor frequency at this speed is %f Hz",fr)); //solution (vii) v=230; ratio1=1/0.5; //stator to rotor turns ratio E_rotor=v*(1/ratio1); E_rotor_dash=ratio*E_rotor; -disp(sprintf("(vii) The rotor induced emf is %.1f V",E_rotor_dash)); +disp(sprintf("(vii) The rotor induced emf is %f V",E_rotor_dash)); //END diff --git a/1445/CH10/EX10.4/Ex10_4.sce b/1445/CH10/EX10.4/Ex10_4.sce index dc5a845d9..32c7b2eba 100644 --- a/1445/CH10/EX10.4/Ex10_4.sce +++ b/1445/CH10/EX10.4/Ex10_4.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 4 +clc; disp("CHAPTER 10"); disp("EXAMPLE 4"); @@ -15,15 +16,15 @@ s_m=r2/X2; s=1; ratio1=2/((s/s_m)+(s_m/s)); //ratio of T_starting and T_max ratio2=2*ratio1; //ratio of T_starting and T_full-load (T_max=2*T_full-load) -disp(sprintf("(a) If the motor is started by direct-on-line starter, the ratio of starting torque to full load torque is %.3f",ratio2)); +disp(sprintf("(a) If the motor is started by direct-on-line starter, the ratio of starting torque to full load torque is %f",ratio2)); //solution (b) ratio3=(1/3)*ratio2; //In star-delta starter, T_starting=(1/3)*T_starting_of_DOL -disp(sprintf("(b) If the motor is started by star-delta starter, the ratio of starting torque to full load torque is %.4f",ratio3)); +disp(sprintf("(b) If the motor is started by star-delta starter, the ratio of starting torque to full load torque is %f",ratio3)); //solution (c) ratio4=0.7*2*ratio2; //due to 70% tapping -disp(sprintf("(c) If the motor is started by auto-transformer, the ratio of starting torque to full load torque is %.4f",ratio4)); +disp(sprintf("(c) If the motor is started by auto-transformer, the ratio of starting torque to full load torque is %f",ratio4)); //END diff --git a/1445/CH10/EX10.5/Ex10_5.sce b/1445/CH10/EX10.5/Ex10_5.sce index cb2d70200..e1fbc950e 100644 --- a/1445/CH10/EX10.5/Ex10_5.sce +++ b/1445/CH10/EX10.5/Ex10_5.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 5 +clc; disp("CHAPTER 10"); disp("EXAMPLE 5"); diff --git a/1445/CH10/EX10.6/Ex10_6.sce b/1445/CH10/EX10.6/Ex10_6.sce index fb2412441..d5950b263 100644 --- a/1445/CH10/EX10.6/Ex10_6.sce +++ b/1445/CH10/EX10.6/Ex10_6.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 6 +clc; disp("CHAPTER 10"); disp("EXAMPLE 6"); @@ -20,7 +21,7 @@ disp(sprintf("The speed of the motor is %d rpm",N_r)); E_s=E/sqrt(3); //phase voltage=(line voltage)/sqrt(3) for star connection E_r=E_s*(1/ratio); E_r_dash=s*E_r; -disp(sprintf("The rotor induced emf above 2 Hz is %.3f V per phase",E_r_dash)); //Answer given in the book is wrong +disp(sprintf("The rotor induced emf above 2 Hz is %f V per phase",E_r_dash)); //Answer given in the book is wrong //END diff --git a/1445/CH10/EX10.7/Ex10_7.sce b/1445/CH10/EX10.7/Ex10_7.sce index 0e53dbb1b..80126f52d 100644 --- a/1445/CH10/EX10.7/Ex10_7.sce +++ b/1445/CH10/EX10.7/Ex10_7.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 7 +clc; disp("CHAPTER 10"); disp("EXAMPLE 7"); @@ -17,26 +18,26 @@ N_r=1460; //full load speed in rpm //solution (i) N_s=(120*f)/P; s_fl=(N_s-N_r)/N_s; -disp(sprintf("(i) The slip at full load is %.2f %%",s_fl*100)); +disp(sprintf("(i) The slip at full load is %f %%",s_fl*100)); s_m=r2/X2; -disp(sprintf("The slip at which maximum torque occurs is %.0f %%",s_m*100)); +disp(sprintf("The slip at which maximum torque occurs is %f %%",s_m*100)); //solution (ii) E2=E1/sqrt(3); //phase voltage=(line voltage)/sqrt(3) for star connection -disp(sprintf("(ii) The emf induced in rotor is %.1f V per phase",E2)); +disp(sprintf("(ii) The emf induced in rotor is %f V per phase",E2)); //solution (iii) X2_dash=s_fl*X2; -disp(sprintf("(iii) The rotor reactance per phase is %.4f Ω",X2_dash)); +disp(sprintf("(iii) The rotor reactance per phase is %f Ω",X2_dash)); //solution (iv) z=sqrt((r2^2)+(X2_dash)^2); I2=(s_fl*E2)/z; -disp(sprintf("(iv) The rotor current is %.2f A",I2)); +disp(sprintf("(iv) The rotor current is %f A",I2)); //solution (v) pow_fact_r=r2/z; -disp(sprintf("(v) The rotor power factor is %.3f (lagging)",pow_fact_r)); +disp(sprintf("(v) The rotor power factor is %f (lagging)",pow_fact_r)); //END diff --git a/1445/CH10/EX10.8/Ex10_8.sce b/1445/CH10/EX10.8/Ex10_8.sce index f324e51a5..f0d05ddf7 100644 --- a/1445/CH10/EX10.8/Ex10_8.sce +++ b/1445/CH10/EX10.8/Ex10_8.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 8 +clc; disp("CHAPTER 10"); disp("EXAMPLE 8"); @@ -32,6 +33,6 @@ disp(sprintf("(d) The mechanical power developed to load is %d kW",p_shaft)); //solution (e) eff=p_shaft/p_in; -disp(sprintf("(e) The efficiency of the motor is %.2f %%",eff*100)); +disp(sprintf("(e) The efficiency of the motor is %f %%",eff*100)); //END diff --git a/1445/CH10/EX10.9/Ex10_9.sce b/1445/CH10/EX10.9/Ex10_9.sce index 71a074562..9bf730d70 100644 --- a/1445/CH10/EX10.9/Ex10_9.sce +++ b/1445/CH10/EX10.9/Ex10_9.sce @@ -1,6 +1,7 @@ //CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 9 +clc; disp("CHAPTER 10"); disp("EXAMPLE 9"); @@ -25,7 +26,7 @@ I_s=I2/ratio; //stator current N_s=(120*f)/P; w=(2*%pi*N_s)/60; T_s1=(3*E2^2*r2)/(w*z1^2); -disp(sprintf("(a) The starting current is %.1f A and torque is %.0f N-m",I_s,T_s1)); +disp(sprintf("(a) The starting current is %f A and torque is %f N-m",I_s,T_s1)); //solution (b) I_s1=30; @@ -34,7 +35,7 @@ r=sqrt(((E2/I_r)^2)-(X2^2)); r_ext=r-r2; z2=sqrt((r_ext^2)+(X2^2)); T_s2=(3*E2^2*r)/(w*z2^2); -disp(sprintf("(b) The external resistance is %.2f Ω and torque is %.2f N-m",r_ext,T_s2)); +disp(sprintf("(b) The external resistance is %f Ω and torque is %f N-m",r_ext,T_s2)); //There answers are different due to precision of floating point numbers |