summaryrefslogtreecommitdiff
path: root/1430/CH9
diff options
context:
space:
mode:
Diffstat (limited to '1430/CH9')
-rw-r--r--1430/CH9/EX9.1/exa9_1.jpgbin0 -> 38254 bytes
-rw-r--r--1430/CH9/EX9.1/exa9_1.sce25
-rw-r--r--1430/CH9/EX9.11/exa9_11.jpgbin0 -> 26407 bytes
-rw-r--r--1430/CH9/EX9.11/exa9_11.sce32
-rw-r--r--1430/CH9/EX9.12/exa9_12.jpgbin0 -> 67521 bytes
-rw-r--r--1430/CH9/EX9.12/exa9_12.sce46
-rw-r--r--1430/CH9/EX9.2/exa9_2.jpgbin0 -> 75822 bytes
-rw-r--r--1430/CH9/EX9.2/exa9_2.sce19
-rw-r--r--1430/CH9/EX9.3/exa9_3.jpgbin0 -> 30689 bytes
-rw-r--r--1430/CH9/EX9.3/exa9_3.sce25
-rw-r--r--1430/CH9/EX9.4/exa9_4.jpgbin0 -> 79326 bytes
-rw-r--r--1430/CH9/EX9.4/exa9_4.sce43
-rw-r--r--1430/CH9/EX9.5/exa9_5.jpgbin0 -> 196661 bytes
-rw-r--r--1430/CH9/EX9.5/exa9_5.sce40
-rw-r--r--1430/CH9/EX9.8/exa9_8.jpgbin0 -> 28792 bytes
-rw-r--r--1430/CH9/EX9.8/exa9_8.sce25
-rw-r--r--1430/CH9/EX9.9/exa9_9.jpgbin0 -> 124019 bytes
-rw-r--r--1430/CH9/EX9.9/exa9_9.sce42
18 files changed, 297 insertions, 0 deletions
diff --git a/1430/CH9/EX9.1/exa9_1.jpg b/1430/CH9/EX9.1/exa9_1.jpg
new file mode 100644
index 000000000..9aa3a6d32
--- /dev/null
+++ b/1430/CH9/EX9.1/exa9_1.jpg
Binary files differ
diff --git a/1430/CH9/EX9.1/exa9_1.sce b/1430/CH9/EX9.1/exa9_1.sce
new file mode 100644
index 000000000..5e11a0e9d
--- /dev/null
+++ b/1430/CH9/EX9.1/exa9_1.sce
@@ -0,0 +1,25 @@
+// Example 9.1
+// Zero-Input Response of an RL circuit
+// From figure 9.5
+L=60*10^-3;
+R_eq=40+10;// Equivalent resistance
+tau=L/R_eq; // Time constant
+// Let us denote y(0^-) by y_bef and y(0^+) by y_aft
+i_bef= 25/10; // t<0 , under steady state conditions
+// form the continuity equation of inductor current we get
+i_aft=i_bef;
+v_bef=25;
+t=0:0.0001:0.01;
+i=i_aft*%e^(-t/tau); // t>0
+v=-40*i; // t>0
+subplot(2,1,1)
+plot(t,i,'r');
+xlabel('t')
+ylabel('i(t)')
+title('Current Waveform of inductor')
+subplot(2,1,2)
+plot(t,v,'-g')
+xlabel('t')
+ylabel('v(t)')
+title('Voltage Waveform across 40-Ohm resistance')
+
diff --git a/1430/CH9/EX9.11/exa9_11.jpg b/1430/CH9/EX9.11/exa9_11.jpg
new file mode 100644
index 000000000..1178d5523
--- /dev/null
+++ b/1430/CH9/EX9.11/exa9_11.jpg
Binary files differ
diff --git a/1430/CH9/EX9.11/exa9_11.sce b/1430/CH9/EX9.11/exa9_11.sce
new file mode 100644
index 000000000..c3c60fcea
--- /dev/null
+++ b/1430/CH9/EX9.11/exa9_11.sce
@@ -0,0 +1,32 @@
+//Example 9.11
+// Underdamped Zero-Input Response
+// form figure 9.25
+L=0.1;
+R=5;
+C=1/640;
+alpha=R/(2*L);
+omega_0=sqrt(1/(L*C));
+//Characteristic Values
+p1=-alpha+sqrt(alpha^2-omega_0^2);
+omega_d=sqrt(omega_0^2-alpha^2);
+p2=p1'; // Complex conjugate
+V_s1=30; // t<0
+V_s2=0;//t>0
+// using initial conditions we find
+i_L_aft=0;// i(0^+)=0
+i_L_aft_d=-30/L; // i'(0^+)=0
+I_ss= 0; // when capacitor becomes fully charge before t<0
+//Using complex matrix equation
+P=[1,1;p1,p2];
+I=[i_L_aft-I_ss;i_L_aft_d]
+A=P\I
+A_1=A(1);
+A_1_m=abs(A_1);
+phase_A_1=atan(imag(A_1),real(A_1))*(180/%pi);
+t=0:0.001:0.5
+i_L=2*A_1_m*exp(-alpha*t).*cos(omega_d*t+phase_A_1);
+plot(t,i_L)
+xlabel('t')
+ylabel('i_L(t)')
+title('Current Waveform')
+
diff --git a/1430/CH9/EX9.12/exa9_12.jpg b/1430/CH9/EX9.12/exa9_12.jpg
new file mode 100644
index 000000000..e74a421fa
--- /dev/null
+++ b/1430/CH9/EX9.12/exa9_12.jpg
Binary files differ
diff --git a/1430/CH9/EX9.12/exa9_12.sce b/1430/CH9/EX9.12/exa9_12.sce
new file mode 100644
index 000000000..9005a8d17
--- /dev/null
+++ b/1430/CH9/EX9.12/exa9_12.sce
@@ -0,0 +1,46 @@
+// Example 9.12
+// Step Response with variable damping
+V_s1=0; // Voltage source value for t<0
+V_s2=30;//Voltage source value for t>0
+L=0.1;
+C=1/640;
+omega_0=sqrt(1/(L*C));
+v_C_aft=0; // v_C(0^+)=0;
+v_C_aft_d=0; // v_C'(0^+)=0;
+V_ss=30;
+// for Overdamped Response
+// Let
+R=34;
+alpha=R/(2*L);
+p1=-alpha+sqrt(alpha^2-omega_0^2)
+p2=-alpha-sqrt(alpha^2-omega_0^2)
+P=[1,1;p1,p2];// coefficients of A's matrix
+V=[v_C_aft-V_ss;v_C_aft_d];// initial conditions and excitations
+A=P\V;
+A_1=A(1);
+A_2=A(2);
+t=0:0.001:0.5
+v_C=V_ss+A_1*exp(p1*t)+A_2*exp(p2*t);// t>0
+// for Underdamped Response
+// Let
+R1=5;
+alpha1=R1/(2*L);
+p3=-alpha1+sqrt(alpha1^2-omega_0^2);
+p4=-alpha1-sqrt(alpha1^2-omega_0^2);
+omega_d=sqrt(omega_0^2-alpha1^2);
+P1=[1,1;p3,p4];
+V1=[v_C_aft-V_ss;v_C_aft_d];
+A1=P1\V1
+A_3=A1(1);
+v_C1=V_ss+2*abs(A_3)*exp(-alpha1*t).*cos(omega_d*t+atan(imag(A_3),real(A_3)));
+// for Critically Damped Response
+R2=sqrt(6400/25);
+alpha2=R2/(2*L);
+A_4=v_C_aft-V_ss;
+A_5=v_C_aft_d+alpha2*A_4;
+v_C2=V_ss+A_4*exp(-alpha2*t)+A_5*t.*exp(-alpha2*t);
+plot(t,v_C,t,v_C1,t,v_C2)
+xlabel('t')
+ylabel('v_c(t)')
+title('Step Response with variable damping')
+h1=legend(['Overdamped';'Underdamped';'Critically damped'])
diff --git a/1430/CH9/EX9.2/exa9_2.jpg b/1430/CH9/EX9.2/exa9_2.jpg
new file mode 100644
index 000000000..f355c8068
--- /dev/null
+++ b/1430/CH9/EX9.2/exa9_2.jpg
Binary files differ
diff --git a/1430/CH9/EX9.2/exa9_2.sce b/1430/CH9/EX9.2/exa9_2.sce
new file mode 100644
index 000000000..fe2aa6625
--- /dev/null
+++ b/1430/CH9/EX9.2/exa9_2.sce
@@ -0,0 +1,19 @@
+// Example 9.2
+// Step response of an RC circuit
+C=50*10^-6;
+R_eq=(3000*6000)/(3000+6000); // From figure 9.10(a)
+v_oc=(6*12)/(3+6);
+tau=R_eq*C;
+t=0:0.0001:1
+v=v_oc*(1-exp(-t/tau)); // t>0
+i=(v_oc-v)/(R_eq); // t>0
+subplot(2,1,1)
+plot(t,v,)
+xlabel('t')
+ylabel('v(t)')
+title('Voltage waveform across capacitor')
+subplot(2,1,2)
+plot(t,i)
+xlabel('t')
+ylabel('i(t)')
+title('Current waveform across capacitor')
diff --git a/1430/CH9/EX9.3/exa9_3.jpg b/1430/CH9/EX9.3/exa9_3.jpg
new file mode 100644
index 000000000..808e99fdf
--- /dev/null
+++ b/1430/CH9/EX9.3/exa9_3.jpg
Binary files differ
diff --git a/1430/CH9/EX9.3/exa9_3.sce b/1430/CH9/EX9.3/exa9_3.sce
new file mode 100644
index 000000000..fe74a9bed
--- /dev/null
+++ b/1430/CH9/EX9.3/exa9_3.sce
@@ -0,0 +1,25 @@
+// Example 9.3
+// Analysis of a Relay Driver
+R_eq=10+15; // from figure 9.13(a)
+L=400*10^-3;
+tau=L/R_eq;
+V=5; // DC voltage source
+I_ss=5/25; // steady state value of current in the circuit
+t=0:10^-3:30*10^-3;
+i_L1=I_ss*(1-%e^(-t/tau)); // 0<t<=30*10^-3;
+// the relay closes at time t1 when i_L1(t1)=150*10^-3;
+// Solving equation 200*(1-%e^(-t1/16))=150;
+t1= -tau*log(1-150/200);
+i_L2_peak= I_ss*(1-exp(-30/16)); // Value of current at the end of the pulse
+// After the pulse is over,the exponential decay of the current becomes
+t3=0.030:0.001:0.05
+i_L2=i_L2_peak*exp(-(t3-30*10^-3)/tau);
+// the relay then opens at t2 when i_L2(t2)=40*10^-3;
+// solving equation 169*exp(-t2/16)=40;
+t2= (30*10^-3)-tau*log(40/169)
+t_int=t2-t1;
+plot(t,i_L1,t3,i_L2)
+xlabel('t')
+ylabel('i_L(t)')
+title('Current Waveform')
+disp(t_int,"Relay remains closed over the interval(sec)=");
diff --git a/1430/CH9/EX9.4/exa9_4.jpg b/1430/CH9/EX9.4/exa9_4.jpg
new file mode 100644
index 000000000..f725e52f8
--- /dev/null
+++ b/1430/CH9/EX9.4/exa9_4.jpg
Binary files differ
diff --git a/1430/CH9/EX9.4/exa9_4.sce b/1430/CH9/EX9.4/exa9_4.sce
new file mode 100644
index 000000000..812fd98b3
--- /dev/null
+++ b/1430/CH9/EX9.4/exa9_4.sce
@@ -0,0 +1,43 @@
+//Example 9.4
+// Sequential switched transients
+// form figure 9.14(a)
+// using symbols y(0^-)=y_bef and y(0^+)=y_aft
+v_bef=0;
+i_bef=0;
+C=100*10^-6; // Farad
+V_0=0; // voltage continuity of capacitor
+I_0= (-16-V_0)/(8000); // using KVL in figure 9.14(b)
+// By DC steady-state analysis,v(t) and i(t) head for the values,
+V_ss=(24*(-16))/(8+24);
+I_ss=-(16*10^-3)/(8+24);
+// supressing the 16V source
+R_eq=(8000*24000)/(8000+24000);
+tau=R_eq*C // Time constant
+t=0:0.0001:1
+v=V_ss+(V_0-V_ss)*exp(-t/tau); // 0<t<=1s
+i=I_ss+(I_0-I_ss)*exp(-t/tau); // 0<t<=1s
+t1=1; // for t= 1
+v_1=V_ss+(V_0-V_ss)*exp(-t1/tau);
+i_1=I_ss+(I_0-I_ss)*exp(-t1/tau);
+// Now the circuit is driven by two dc sources
+// Equivalent circuit is shown in figure 9.14(c)
+V_0_n=v_1; // Voltage continuity of capacitor
+I_0_n=(14.4 -V_0_n)/(4.8*10^3);
+V_ss_n=(24*14.4)/(4.8+24);
+I_ss_n=14.4/((4.8+24)*10^3);
+R_eq_n=((4.8*24)*10^3)/(4.8+24);
+tau_n=R_eq_n*C; // New time constant
+t2=1:0.0001:3
+v_n=V_ss_n+(V_0_n-V_ss_n)*exp(-(t2-1)/0.4);
+i_n=I_ss_n+(I_0_n-I_ss_n)*exp(-(t2-1)/0.4);
+subplot(2,1,1)
+plot(t,v,'-g',t2,v_n,'-g')
+xlabel('t')
+ylabel('v(t)')
+title('Voltage Waveform')
+subplot(2,1,2)
+plot(t,i,'-r',t2,i_n,'-r')
+xlabel('t')
+ylabel('i(t)')
+title('Current Waveform')
+
diff --git a/1430/CH9/EX9.5/exa9_5.jpg b/1430/CH9/EX9.5/exa9_5.jpg
new file mode 100644
index 000000000..495bde00e
--- /dev/null
+++ b/1430/CH9/EX9.5/exa9_5.jpg
Binary files differ
diff --git a/1430/CH9/EX9.5/exa9_5.sce b/1430/CH9/EX9.5/exa9_5.sce
new file mode 100644
index 000000000..1109ac911
--- /dev/null
+++ b/1430/CH9/EX9.5/exa9_5.sce
@@ -0,0 +1,40 @@
+// Example 9.5
+// Transients in an AM Radio signal
+// From figure 9.16(a)
+omega=15;
+L=1;
+R=26;
+Z_L=%i*omega*L
+V_s1=complex(6,0); // Voltage source phasor t<0
+V_s2=complex(12,0); // Voltage source phasor t>0
+I=V_s1/(R+Z_L); // Current phasor for t<0
+V=Z_L*I; // Voltage phasor for t<0
+I_m=abs(I); // current phasor magnitude
+phase_I= atan(imag(I),real(I))*(180/%pi);
+V_m=abs(V);
+phase_V=atan(imag(V),real(V))*(180/%pi);
+// since current has continuity
+I_0=I_m*cos(atan(imag(I),real(I)));
+// the initial value of v(t)
+V_0=V_s2-R*I_0; // KVL
+// Phasor analysis for t>0
+I_F=I*2;
+V_F=V*2;
+tau=L/R; // time constant
+I_F_0=abs(I_F)*cos(atan(imag(I_F),real(I_F))); // initial condition
+V_F_0=abs(V_F)*cos(atan(imag(V_F),real(V_F))); // initial condition
+A_I= I_0-I_F_0;
+A_V=V_0-V_F_0;
+t=0:0.01:10;
+i=abs(I_F)*cos(omega*t+atan(imag(I),real(I)))+A_I*exp(-t/tau);
+v=abs(V_F)*cos(omega*t+atan(imag(V),real(V)))+A_V*exp(-t/tau);
+subplot(2,1,1)
+plot(t,i,'-g')
+xlabel('t')
+ylabel('i(t)')
+title('Current waveform')
+subplot(2,1,2)
+plot(t,v,'-r')
+xlabel('t')
+ylabel('v(t)')
+title('Voltage waveform')
diff --git a/1430/CH9/EX9.8/exa9_8.jpg b/1430/CH9/EX9.8/exa9_8.jpg
new file mode 100644
index 000000000..9567ea802
--- /dev/null
+++ b/1430/CH9/EX9.8/exa9_8.jpg
Binary files differ
diff --git a/1430/CH9/EX9.8/exa9_8.sce b/1430/CH9/EX9.8/exa9_8.sce
new file mode 100644
index 000000000..c92e03958
--- /dev/null
+++ b/1430/CH9/EX9.8/exa9_8.sce
@@ -0,0 +1,25 @@
+//Example 9.8
+// Natural Response of a Series LRC Circuit
+// From figure 9.17
+L=0.1;
+R=14;
+C=1/400;
+// Since Excitation is zero by definition of natural response ,we set v_s'=0 in standard 2nd order diffrential equation
+// homogeneneous differential equation will be
+// i_L''+(R/L)*i_L'+(1/(L*C))*i_L=0
+s=%s;
+p=s^2+(R/L)*s+(1/(L*C)); // characteristic equation
+//comparing this equation with standard 2nd order diffrential equation we get
+alpha=R/(2*L);
+omega=sqrt(1/(L*C));
+r=roots(p); // roots of characteristic equation
+// Let us assume values for A's
+A_1= -5;
+A_2= 7;
+t=0:0.001:0.1;
+i_l=A_1*exp(r(2)*t)+A_2*exp(r(1)*t);
+plot(t,i_l) // typical plot of Overdamped Response
+xlabel('t')
+ylabel('i_l(t)')
+title("Overdamped Response of series LRC circuit")
+
diff --git a/1430/CH9/EX9.9/exa9_9.jpg b/1430/CH9/EX9.9/exa9_9.jpg
new file mode 100644
index 000000000..b6d901b4a
--- /dev/null
+++ b/1430/CH9/EX9.9/exa9_9.jpg
Binary files differ
diff --git a/1430/CH9/EX9.9/exa9_9.sce b/1430/CH9/EX9.9/exa9_9.sce
new file mode 100644
index 000000000..8c62d3e37
--- /dev/null
+++ b/1430/CH9/EX9.9/exa9_9.sce
@@ -0,0 +1,42 @@
+//Example 9.9
+// Natural response of a Phase-Shift Oscillator
+// Continued from textbook example 9.7
+C=2*10^-6;
+R=100;
+L=10*10^-3;
+K=poly(0,'K'); // Variable gain K
+alpha=(R/(2*L))*(L/(R^2*C)+1-K);
+omega_0=sqrt(2/(L*C));
+K=roots(alpha);
+alpha=horner(alpha,K)
+// Since this is the case of underdamped response
+//Assume value for A_1 for illustration
+A1=complex(0,1.974)
+A1_m=abs(A1);
+phase_A1=atan(imag(A1),real(A1));
+t=0:0.01:1
+t1=0:0.0001:0.02
+v_out1=2*A1_m*cos(omega_0*t+phase_A1) // Underdamped response case1
+K1=1; // New value of gain
+alpha1=(R/(2*L))*(L/(R^2*C)+1-K1);
+omega_d1=sqrt(omega_0^2-alpha1^2);
+v_out2=2*A1_m*%e^(-alpha1*t1).*cos(omega_d1*t1+phase_A1);
+K2=2;
+alpha2=(R/(2*L))*(L/(R^2*C)+1-K2);
+omega_d2=sqrt(omega_0^2-alpha2^2)
+v_out3=2*A1_m*%e^(-alpha2*t1).*cos(omega_d2*t1+phase_A1)
+subplot(3,1,1)
+plot(t,v_out1)
+xlabel('t')
+ylabel('v_out1(t)')
+title('Underdamped case 1')
+subplot(3,1,2)
+plot(t1,v_out2)
+xlabel('t')
+ylabel('v_out1(t)')
+title('Underdamped case 2')
+subplot(3,1,3)
+plot(t1,v_out3)
+xlabel('t')
+ylabel('v_out1(t)')
+title('Underdamped case 3')