diff options
Diffstat (limited to '1430/CH8')
-rw-r--r-- | 1430/CH8/EX8.1/exa8_1.sce | 23 | ||||
-rw-r--r-- | 1430/CH8/EX8.1/exa8_1.txt | 14 | ||||
-rw-r--r-- | 1430/CH8/EX8.2/exa8_2.sce | 29 | ||||
-rw-r--r-- | 1430/CH8/EX8.2/exa8_2.txt | 12 | ||||
-rw-r--r-- | 1430/CH8/EX8.3/exa8_3.jpg | bin | 0 -> 149095 bytes | |||
-rw-r--r-- | 1430/CH8/EX8.3/exa8_3.sce | 28 | ||||
-rw-r--r-- | 1430/CH8/EX8.4/exa8_4.sce | 17 | ||||
-rw-r--r-- | 1430/CH8/EX8.4/exa8_4.txt | 17 | ||||
-rw-r--r-- | 1430/CH8/EX8.6/exa8_6.sce | 18 | ||||
-rw-r--r-- | 1430/CH8/EX8.6/exa8_6.txt | 17 |
10 files changed, 175 insertions, 0 deletions
diff --git a/1430/CH8/EX8.1/exa8_1.sce b/1430/CH8/EX8.1/exa8_1.sce new file mode 100644 index 000000000..9b9c250aa --- /dev/null +++ b/1430/CH8/EX8.1/exa8_1.sce @@ -0,0 +1,23 @@ +// Example 8.1
+// Analysis of a Transformer Circuit
+// Form figure 8.4(a)
+N=3; // Ideal step-up transformer
+V=complex(60,0);
+omega=5000;// Radian frequency (rad/s)
+Z_R=90; // Ohms
+C=10*10^-6; // Farad
+Z_C=1/(%i*omega*C);
+// From frequency domain diagram 8.4(b)
+V_1=V;
+V_2=3*V;
+I_R=(3*V_1)/Z_R; // Ohm's law for AC circuits
+I_C=(V_1-V_2)/Z_C // Ohm's Law
+I_2=I_C-I_R; // KCL
+I=I_C-3*I_2;// KCL
+Z=V/I;
+P=0.5*real(Z)*abs(I)^2;
+P_R=0.5*Z_R*abs(I_R)^2;
+disp(P,"Average power supplied by the source(in Watts)=")
+disp(P_R,"Average power dissipated by 90-Ohm resistor(in Watts)=")
+disp("All the power from source is transferrd to the resistor")
+
diff --git a/1430/CH8/EX8.1/exa8_1.txt b/1430/CH8/EX8.1/exa8_1.txt new file mode 100644 index 000000000..17e1d43b4 --- /dev/null +++ b/1430/CH8/EX8.1/exa8_1.txt @@ -0,0 +1,14 @@ +
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 8\exa8.1.sce', -1)
+
+ Average power supplied by the source(in Watts)=
+
+ 180.
+
+ Average power dissipated by 90-Ohm resistor(in Watts)=
+
+ 180.
+
+ All the power from source is transferrd to the resistor
+
diff --git a/1430/CH8/EX8.2/exa8_2.sce b/1430/CH8/EX8.2/exa8_2.sce new file mode 100644 index 000000000..1e8d8cb42 --- /dev/null +++ b/1430/CH8/EX8.2/exa8_2.sce @@ -0,0 +1,29 @@ +// Example 8.2
+// Power Transmission with Transformers
+// From figure 8.8(a)
+P=15000; // Watts ; Objective of the problem
+R_S=2;//source resistance
+R_L=3;// Load resistance
+I_out_m=sqrt(2*P/3);
+V_out_m=R_L*I_out_m;
+I_m=I_out_m; // Line current
+V_s_m=(R_L+R_S)*I_m; // Ohm's Law
+Eff=R_L/(R_L+R_S);
+P_S=0.5*2*I_m^2; // Power waste in transmission line
+// Now Form modified circuit 8.8(b)
+phase_i_out=0; // in degree
+I_out=complex(I_out_m,0);
+V_out=complex(V_out_m,0);
+// Now we will refer both th source and the load into the middle section with transmission line
+R_L_ref=4^2*R_L;// Load resistance referred to the primary
+Eff_new=R_L_ref/(R_L_ref+R_S);
+N=poly(0,'N')
+I_m_new=(V_s_m*N)/(R_L_ref+R_S);
+a=I_m_new-I_out_m/4;
+N=roots(a);
+I_m_new=horner(I_m_new,N)
+P_S_new=0.5*2*I_m_new^2;
+phase_I_new=phase_i_out;
+I_in=complex(I_m_new,0)*N;
+disp(Eff,"Power transfer efficiency without transformer(in Watt)=")
+disp(Eff_new,"Power transfer efficiency with transformer(in Watt)=")
diff --git a/1430/CH8/EX8.2/exa8_2.txt b/1430/CH8/EX8.2/exa8_2.txt new file mode 100644 index 000000000..727527092 --- /dev/null +++ b/1430/CH8/EX8.2/exa8_2.txt @@ -0,0 +1,12 @@ +
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 8\exa8.2.sce', -1)
+
+ Power transfer efficiency without transformer(in Watt)=
+
+ 0.6
+
+ Power transfer efficiency with transformer(in Watt)=
+
+ 0.96
+
diff --git a/1430/CH8/EX8.3/exa8_3.jpg b/1430/CH8/EX8.3/exa8_3.jpg Binary files differnew file mode 100644 index 000000000..24f0a879d --- /dev/null +++ b/1430/CH8/EX8.3/exa8_3.jpg diff --git a/1430/CH8/EX8.3/exa8_3.sce b/1430/CH8/EX8.3/exa8_3.sce new file mode 100644 index 000000000..f6315b07e --- /dev/null +++ b/1430/CH8/EX8.3/exa8_3.sce @@ -0,0 +1,28 @@ +// Example 8.3
+// Transformer-coupled Oscillator
+// From figure 8.9(a)
+V_m=12;//Magnitude of voltage source
+omega=50000;// radial frequency (rad/s)
+R_s=1000;//
+V_s=20;// DC source
+Z_C=1/(%i*omega*0.1*10^-6);
+R=500;
+// from figure 8.9(b)
+// referring the ac source to the secondary ,as shown in figure 8.9(b)
+N=1/2;
+R_s_new=N^2*R_s;
+I=complex((N*12)/(N^2*R_s),0);
+// using node equations
+V_out=I/(1/R+1/Z_C+1/R_s_new);
+I_out=(1/Z_C+1/R)*V_out;
+I_in1=N*I_out;// Ac component of primary current
+I_in2=-V_s/R_s; // DC component of primary current
+I_in1_m=abs(I_in1);
+phase_I_in1=atan(imag(I_in1),real(I_in1))*(180/%pi);
+// by superposition total primary current will be
+t=0:0.5:100
+I_in=I_in1_m*cos(omega*t+phase_I_in1) + I_in2;
+plot(t,I_in)
+xlabel('t')
+ylabel('i_in(t)')
+title('Current Waveform')
diff --git a/1430/CH8/EX8.4/exa8_4.sce b/1430/CH8/EX8.4/exa8_4.sce new file mode 100644 index 000000000..351c7e6da --- /dev/null +++ b/1430/CH8/EX8.4/exa8_4.sce @@ -0,0 +1,17 @@ +// Example 8.4
+// Impedance Matching with a Transformer
+omega=10^5;
+R_L=500 ;
+I_s_m=100*10^-3;
+Z_s=(400*(-%i*200))/(400-%i*200); // from figure 8.10(a)
+V_s_m=abs(Z_s)*I_s_m;
+// From figure 8.10(b),load impedance referred to the primary
+// Turn ratio
+N=sqrt(500/80); // from condition of impedance matching
+L=(160*N^2)/omega;// from condition of impedance matching
+P_max=(V_s_m/sqrt(2))^2/(4*real(Z_s));
+// Load reactance will be
+X_L=%i*omega*L;
+disp(X_L,"Load reactance for maximum power transfer(Ohms)=")
+disp(N,"Turn ratio for maximum power transfer=")
+disp(P_max,"Maximum power transferred(Watts)=")
diff --git a/1430/CH8/EX8.4/exa8_4.txt b/1430/CH8/EX8.4/exa8_4.txt new file mode 100644 index 000000000..091a5635a --- /dev/null +++ b/1430/CH8/EX8.4/exa8_4.txt @@ -0,0 +1,17 @@ +
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 8\exa8_4.sce', -1)
+
+ Load reactance for maximum power transfer(Ohms)=
+
+ 1000.i
+
+ Turn ratio for maximum power transfer=
+
+ 2.5
+
+ Maximum power transferred(Watts)=
+
+ 0.5
+
+
diff --git a/1430/CH8/EX8.6/exa8_6.sce b/1430/CH8/EX8.6/exa8_6.sce new file mode 100644 index 000000000..5977e2455 --- /dev/null +++ b/1430/CH8/EX8.6/exa8_6.sce @@ -0,0 +1,18 @@ +// Example 8.6
+// Comparison of a real and ideal Transformer
+// form figure 8.21
+omegaL_1=100;
+omegaM=490;
+omegaL_2=2500;
+Z=200;
+N=sqrt(omegaL_2/omegaL_1)
+// since omegaL_2>>|Z| and k=0.98 the transformer will act almost like an ideal transformer
+k=omegaM/sqrt(omegaL_1*omegaL_2);
+// Let us denote I_out/I_in = I_gain
+// V_out/V_in=V_gain
+I_gain=(%i*omegaM)/(%i*omegaL_2+Z);
+Z_in=(%i*omegaL_1*Z+(omegaM)^2-(omegaL_1*omegaL_2))/(%i*omegaL_2+Z);
+V_gain=(%i*omegaM*Z)/(%i*omegaL_1*Z+(omegaM)^2-(omegaL_1*omegaL_2));
+disp(I_gain,"Current gain=")
+disp(Z_in,"Input impedance(Ohms)=")
+disp(V_gain,"Voltage gain=")
diff --git a/1430/CH8/EX8.6/exa8_6.txt b/1430/CH8/EX8.6/exa8_6.txt new file mode 100644 index 000000000..120b822d8 --- /dev/null +++ b/1430/CH8/EX8.6/exa8_6.txt @@ -0,0 +1,17 @@ +
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 8\exa8_6.sce', -1)
+
+ Current gain=
+
+ 0.1947536 + 0.0155803i
+
+ Input impedance(Ohms)=
+
+ 7.6343402 + 4.5707472i
+
+ Voltage gain=
+
+ 3.9356639 - 1.9481537i
+
+
|