summaryrefslogtreecommitdiff
path: root/1430/CH6
diff options
context:
space:
mode:
Diffstat (limited to '1430/CH6')
-rw-r--r--1430/CH6/EX6.11/exa6_11.sce23
-rw-r--r--1430/CH6/EX6.11/exa6_11.txt9
-rw-r--r--1430/CH6/EX6.12/exa6_12.sce23
-rw-r--r--1430/CH6/EX6.12/exa6_12.txt13
-rw-r--r--1430/CH6/EX6.15/exa6_15.sce15
-rw-r--r--1430/CH6/EX6.15/exa6_15.txt8
-rw-r--r--1430/CH6/EX6.16/exa6_16.sce21
-rw-r--r--1430/CH6/EX6.16/exa6_16.txt21
-rw-r--r--1430/CH6/EX6.17/exa6_17.jpgbin0 -> 83469 bytes
-rw-r--r--1430/CH6/EX6.17/exa6_17.sce22
-rw-r--r--1430/CH6/EX6.2/exa6_2.sce15
-rw-r--r--1430/CH6/EX6.2/exa6_2.txt18
-rw-r--r--1430/CH6/EX6.3/exa6_3.sce20
-rw-r--r--1430/CH6/EX6.3/exa6_3.txt9
-rw-r--r--1430/CH6/EX6.4/exa6_4.sce18
-rw-r--r--1430/CH6/EX6.4/exa6_4.txt18
-rw-r--r--1430/CH6/EX6.5/exa6_5.sce18
-rw-r--r--1430/CH6/EX6.5/exa6_5.txt19
-rw-r--r--1430/CH6/EX6.6/exa6_6.sce22
-rw-r--r--1430/CH6/EX6.6/exa6_6.txt18
-rw-r--r--1430/CH6/EX6.8/exa6_8.jpgbin0 -> 239904 bytes
-rw-r--r--1430/CH6/EX6.8/exa6_8.sce36
-rw-r--r--1430/CH6/EX6.9/exa6_9.jpgbin0 -> 54698 bytes
-rw-r--r--1430/CH6/EX6.9/exa6_9.sce32
-rw-r--r--1430/CH6/EX6.9/exa6_9.txt7
25 files changed, 405 insertions, 0 deletions
diff --git a/1430/CH6/EX6.11/exa6_11.sce b/1430/CH6/EX6.11/exa6_11.sce
new file mode 100644
index 000000000..8d9f887b3
--- /dev/null
+++ b/1430/CH6/EX6.11/exa6_11.sce
@@ -0,0 +1,23 @@
+// Example 6.11
+// Application of an AC Norton Network
+// from figure 6.25(a)
+V_m=10; // Voltage phasor Magnitude
+omega=5000; // Radian Frequency (rad/s)
+V=complex(10,0); // Voltage Phasor in rectangular form
+Z_R=280; // Ohms
+Z_C=-%i*20;
+Z_L=%i*40;
+Z_t=(Z_L*Z_R)/(Z_L+Z_R)+Z_C; // thevenin resistance
+V_oc= (Z_R*V)/(Z_R+Z_L);
+I_sc= V_oc/Z_t; // Relation Between thevenin's parameter
+Y_t=1/Z_t; // Admittance
+// Let Y= G + i*B
+// Y_eq= Y_t+Y= (0.014+G)+i(B-0.048)
+// for |Y_eq| to be minimum
+G=0;
+B=0.048;
+Y=G+%i*B;
+Z=1/Y;
+Y_eq= Y_t+Y;
+V=I_sc/Y_eq;
+disp(V,"Resultant terminal Voltage in rectangular form(Volts)=")
diff --git a/1430/CH6/EX6.11/exa6_11.txt b/1430/CH6/EX6.11/exa6_11.txt
new file mode 100644
index 000000000..2138663b0
--- /dev/null
+++ b/1430/CH6/EX6.11/exa6_11.txt
@@ -0,0 +1,9 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.11.sce', -1)
+
+ Resultant terminal Voltage in rectangular form(Volts)=
+
+ 5. - 35.i
+
+
diff --git a/1430/CH6/EX6.12/exa6_12.sce b/1430/CH6/EX6.12/exa6_12.sce
new file mode 100644
index 000000000..e8d351c73
--- /dev/null
+++ b/1430/CH6/EX6.12/exa6_12.sce
@@ -0,0 +1,23 @@
+//Example 6.12
+// systematic AC Mesh Analysis
+V_m=30;// Voltage Phasor magnitude
+phase_v=60;
+I_m=1; // current Phasor magnitude
+phase_i=0;
+Z_R=10;
+omega=10; // Radian frequency (rad/s)
+L=2; // Henry
+C=0.01;//Farad
+Z_L=%i*omega*L;
+Z_C=1/(%i*omega*C);
+Z=(Z_R*Z_L)/(Z_R+Z_L)+Z_C; // Sum of the impedance around the mesh
+x_v=V_m*cos((%pi/180)*phase_v);
+y_v=V_m*sin((%pi/180)*phase_v);
+V=complex(x_v,y_v);// Voltage Phasor in Rectangular form
+V_s=V-I_m*Z_C;
+I_1= V_s/Z; // Ohm's Law
+I_1_m=abs(I_1);
+phase_i_1=atan(imag(I_1),real(I_1))*(180/%pi);
+disp("Current in Polar form(Amps)")
+disp(I_1_m,"Magnitude=")
+disp(phase_i_1,"Phase(in Degree)=")
diff --git a/1430/CH6/EX6.12/exa6_12.txt b/1430/CH6/EX6.12/exa6_12.txt
new file mode 100644
index 000000000..b5272f588
--- /dev/null
+++ b/1430/CH6/EX6.12/exa6_12.txt
@@ -0,0 +1,13 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.12.sce', -1)
+
+ Current in Polar form (Amps)
+
+ Magnitude=
+
+ 3.8982243
+
+ Phase(in Degree)=
+
+ 104.23916
diff --git a/1430/CH6/EX6.15/exa6_15.sce b/1430/CH6/EX6.15/exa6_15.sce
new file mode 100644
index 000000000..4496c7d71
--- /dev/null
+++ b/1430/CH6/EX6.15/exa6_15.sce
@@ -0,0 +1,15 @@
+// Example 6.15
+// Series Resonance Design
+// From the given Design specification
+V_m=100;
+omega_0=5000;
+Q_ser=10;
+L=0.4; // Henry
+V_C_m=Q_ser*V_m;
+C=1/(omega_0^2*L)// From the condition of series resonance
+R=(omega_0*L)/Q_ser;
+// When we build the circuit with this specifications we find that that Q_ser=8
+// So there must have some significant winding resistance R_w
+R_w=250-200;
+// So we need to replace 200-Ohm resistor with 150-Ohm so as to get 1kV sinusoid
+disp(R_w,"Winding Resistance(Ohms)=")
diff --git a/1430/CH6/EX6.15/exa6_15.txt b/1430/CH6/EX6.15/exa6_15.txt
new file mode 100644
index 000000000..08fdc7f92
--- /dev/null
+++ b/1430/CH6/EX6.15/exa6_15.txt
@@ -0,0 +1,8 @@
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.15.sce', -1)
+
+ Winding Resistance(Ohms)=
+
+ 50.
+
+
diff --git a/1430/CH6/EX6.16/exa6_16.sce b/1430/CH6/EX6.16/exa6_16.sce
new file mode 100644
index 000000000..2820437e9
--- /dev/null
+++ b/1430/CH6/EX6.16/exa6_16.sce
@@ -0,0 +1,21 @@
+// Example 6.16
+// Parallel Resonance Calculations
+omega_0=5000; // Parallel resonant frequency
+L=10^-2; // Henry
+R_w=2.5;// Ohms
+R=250;// Ohms
+C=1/(omega_0^2*L);
+R_par=L/(C*R_w);
+// from figure 6.39(b)
+R_eq= (R*R_par)/(R+R_par);
+I=complex(40*10^-3,0);
+V=R_eq*I;
+I_1=V/R_par;
+Q_par=R_eq/(omega_0*L);
+I_C=%i*Q_par*I;
+I_2=I_1-I_C;
+disp(V,"Voltage phasor in rectangular form(Volts)=")
+disp(I_1,"Source current phasor in rectangular form(Amps)=")
+disp(I_C,"Current phasor(through Capacitor)in rectangular form(Amps)=")
+disp(I_2,"Current phasor(through inductor)in rectangular form(Amps)=")
+
diff --git a/1430/CH6/EX6.16/exa6_16.txt b/1430/CH6/EX6.16/exa6_16.txt
new file mode 100644
index 000000000..6f6e45764
--- /dev/null
+++ b/1430/CH6/EX6.16/exa6_16.txt
@@ -0,0 +1,21 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.16.sce', -1)
+
+ Voltage phasor in rectangular form(Volts)=
+
+ 8.
+
+ Source current phasor in rectangular form(Amps)=
+
+ 0.008
+
+ Current phasor(through Capacitor)in rectangular form(Amps)=
+
+ 0.16i
+
+ Current phasor(through inductor)in rectangular form(Amps)=
+
+ 0.008 - 0.16i
+
+
diff --git a/1430/CH6/EX6.17/exa6_17.jpg b/1430/CH6/EX6.17/exa6_17.jpg
new file mode 100644
index 000000000..0f2acc81f
--- /dev/null
+++ b/1430/CH6/EX6.17/exa6_17.jpg
Binary files differ
diff --git a/1430/CH6/EX6.17/exa6_17.sce b/1430/CH6/EX6.17/exa6_17.sce
new file mode 100644
index 000000000..3c7282760
--- /dev/null
+++ b/1430/CH6/EX6.17/exa6_17.sce
@@ -0,0 +1,22 @@
+// Example 6.17
+// AC Superposition Calculations
+// from figure 6.40(b),apply node equation we get
+V_c1=poly(0,'V_c1');
+P_1=(1/50+%i/10-%i/20)*V_c1-60/(%i*20); // Node equation
+V_c1=roots(P_1);
+// Now from figure 6.40(c)
+V_c2=poly(0,'V_c2');
+P_2=(1/50+%i/25-%i/8)*V_c2-(%i*3); // Node equation
+V_c2=roots(P_2);
+V_c1_m=abs(V_c1);
+phase_v_c1=atan(imag(V_c1),real(V_c1))*(180/%pi);
+V_c2_m=abs(V_c2);
+phase_v_c2=atan(imag(V_c2),real(V_c2))*(180/%pi);
+omega_1=5;
+omega_2=2;
+t=0:0.01:10;
+v_c=V_c1_m*cos(omega_1*t+phase_v_c1)+V_c2_m*cos(omega_2*t+phase_v_c2);
+plot(t,v_c,'r');
+xlabel('t');
+ylabel('v_c(t)')
+title('Voltage Waveform')
diff --git a/1430/CH6/EX6.2/exa6_2.sce b/1430/CH6/EX6.2/exa6_2.sce
new file mode 100644
index 000000000..f14941def
--- /dev/null
+++ b/1430/CH6/EX6.2/exa6_2.sce
@@ -0,0 +1,15 @@
+// Example 6.2
+// Calculations with Complex Numbers
+A=complex(8,3);
+B=complex(0,100);
+C=complex(3,-4);
+// Since we need to compute D= A+B/C
+T=B/C;
+D=A+T;
+mag= abs(D);
+theta_d=atan(imag(D),real(D))
+disp(D,"In rectangular form=");
+disp("In polar form=");
+disp(mag,"Magnitude");
+disp((theta_d*180)/%pi,"Phase angle(in degree)="); // Conversion from radian to
+// degree
diff --git a/1430/CH6/EX6.2/exa6_2.txt b/1430/CH6/EX6.2/exa6_2.txt
new file mode 100644
index 000000000..15f29a2d3
--- /dev/null
+++ b/1430/CH6/EX6.2/exa6_2.txt
@@ -0,0 +1,18 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.2.sce', -1)
+
+ In rectangular form=
+
+ - 8. + 15.i
+
+ In polar form=
+
+ Magnitude
+
+ 17.
+
+ Phase angle(in degree)=
+
+ 118.07249
+ \ No newline at end of file
diff --git a/1430/CH6/EX6.3/exa6_3.sce b/1430/CH6/EX6.3/exa6_3.sce
new file mode 100644
index 000000000..46ccd2994
--- /dev/null
+++ b/1430/CH6/EX6.3/exa6_3.sce
@@ -0,0 +1,20 @@
+// Example 6.3
+// Parallel Network with an AC Voltage Source
+v_m=30; // Magnitude of voltage phasor
+omega=4000; // radian frequency
+phase_v=20; // Phase angle in degree
+Z_r= 5; // Impedance of Resistance
+C= 25*10^-6; // Capacitance
+Z_c= 1/(%i*omega*C);// Impedance of Capacitance
+i_r=v_m/Z_r; // Ohm's Law in Phasor form
+i_c=v_m/abs(Z_c); // Ohm's Law in Phasor form
+phase_r= phase_v;
+phase_c=phase_v-(-90);
+x_r=i_r*cos((%pi/180)*phase_r);
+y_r=i_r*sin((%pi/180)*phase_r);
+I_r=complex(x_r,y_r);
+x_c=i_c*cos((%pi/180)*phase_c);
+y_c=i_c*sin((%pi/180)*phase_c);
+I_c=complex(x_c,y_c);
+I=I_r+I_c;
+disp(I,"Resultant Steady-state input current in rectangular form(Amps)=")
diff --git a/1430/CH6/EX6.3/exa6_3.txt b/1430/CH6/EX6.3/exa6_3.txt
new file mode 100644
index 000000000..37257a7c6
--- /dev/null
+++ b/1430/CH6/EX6.3/exa6_3.txt
@@ -0,0 +1,9 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.3.sce', -1)
+
+ Resultant Steady-state input current in rectangular form(Amps)=
+
+ 4.6120953 + 4.8711987i
+
+
diff --git a/1430/CH6/EX6.4/exa6_4.sce b/1430/CH6/EX6.4/exa6_4.sce
new file mode 100644
index 000000000..cf58d9fee
--- /dev/null
+++ b/1430/CH6/EX6.4/exa6_4.sce
@@ -0,0 +1,18 @@
+// Example 6.4
+// Parallel Network with an AC Current source
+// Let us assume that voltage phasor is being represent by V, Its magnitude by
+// V_m and its phase by 'phase' variable.
+I=complex(3,0);// Current source phasor
+R=5; //Ohms
+C=25*10^-6;// Farads
+omega=4000; // (rad/s)
+Z_r=5;
+Z_c=1/(%i*omega*C);
+Z_par=(Z_r*Z_c)/(Z_r+Z_c);
+V=I*Z_par; // Voltage phasor in rectangular form
+V_m=abs(V);
+phase=(atan(imag(V),real(V))*180)/%pi;
+disp(V,"Voltage phasor in rectangular form(Volts)=")
+disp("Voltage phasor in polar form")
+disp(V_m,"Magnitude=")
+disp(phase,"Phase (in degree)=")
diff --git a/1430/CH6/EX6.4/exa6_4.txt b/1430/CH6/EX6.4/exa6_4.txt
new file mode 100644
index 000000000..594e0d7f6
--- /dev/null
+++ b/1430/CH6/EX6.4/exa6_4.txt
@@ -0,0 +1,18 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.4.sce', -1)
+
+ Voltage phasor in rectangular form(Volts)=
+
+ 12. - 6.i
+
+ Voltage phasor in polar form
+
+ Magnitude=
+
+ 13.416408
+
+ Phase (in degree)=
+
+ - 26.565051
+ \ No newline at end of file
diff --git a/1430/CH6/EX6.5/exa6_5.sce b/1430/CH6/EX6.5/exa6_5.sce
new file mode 100644
index 000000000..b05ef6260
--- /dev/null
+++ b/1430/CH6/EX6.5/exa6_5.sce
@@ -0,0 +1,18 @@
+// Example 6.5
+// Capacitor Calculation
+C=25*10^-6;// Farad
+omega= 4000;// Radian frequency (rad/s)
+V_m=30;// Magnitude of voltage phasor
+phase_v=20; // Phase of the voltage source
+Z_c=1/(%i*omega*C);// Impedance of the capacitor
+Y_c=1/Z_c; // Admittance of the capacitor
+I_m=abs(Y_c)*V_m; // Ohm's Law,Magnitude of current phasor
+phase_c=atan(imag(Y_c),real(Y_c))*(180/%pi);
+phase_i=phase_c+phase_v;
+x_i=I_m*cos((%pi*phase_i)/180);// X-component of current phasor
+y_i=I_m*sin((%pi*phase_i)/180);//Y-component of current phasor
+I_c=complex(x_i,y_i); // Rectangular form of current through capacitor
+disp(I_c,"Current phasor in Rectangular form(Amps)=")
+disp("Current phasor in Polar form")
+disp(I_m,"Magnitude=")
+disp(phase_i,"Phase(in degree)=")
diff --git a/1430/CH6/EX6.5/exa6_5.txt b/1430/CH6/EX6.5/exa6_5.txt
new file mode 100644
index 000000000..c52677603
--- /dev/null
+++ b/1430/CH6/EX6.5/exa6_5.txt
@@ -0,0 +1,19 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.5.sce', -1)
+
+ Current phasor in Rectangular form(Amps)=
+
+ - 1.0260604 + 2.8190779i
+
+ Current phasor in Polar form
+
+ Magnitude=
+
+ 3.
+
+ Phase(in degree)=
+
+ 110.
+
+
diff --git a/1430/CH6/EX6.6/exa6_6.sce b/1430/CH6/EX6.6/exa6_6.sce
new file mode 100644
index 000000000..da2eab1fa
--- /dev/null
+++ b/1430/CH6/EX6.6/exa6_6.sce
@@ -0,0 +1,22 @@
+// Example 6.6
+// Impedance Analysis of a parallel RC Circuit
+// From figure 6.17
+R=5; // Ohms
+C=25*10^-6; // Farad
+omega=4000; // radian frequency
+V_m=30; // Magnitude of voltage phasor
+phase_v=20; // In degree
+Z_r=5; // Impedance of Resistor
+Z_c=1/(%i*omega*C);
+Z_par=(Z_r*Z_c)/(Z_r+Z_c);
+Y_par=1/Z_par; // Equivalent Admittance
+x_v=V_m*cos((%pi*phase_v)/180);
+y_v=V_m*sin((%pi*phase_v)/180);
+V=complex(x_v,y_v);
+I=V*Y_par;// Current phasor in rectangular form
+I_m=abs(I); // Current phasor magnitude
+phase_i=atan(imag(I),real(I))*(180/%pi); // Phase angle of current phasor
+disp(I,"Current phasor in rectangular form(Amps)=")
+disp("In polar form=")
+disp(I_m,"Magnitude=")
+disp(phase_i,"Phase angle(in degree)=")
diff --git a/1430/CH6/EX6.6/exa6_6.txt b/1430/CH6/EX6.6/exa6_6.txt
new file mode 100644
index 000000000..078efc238
--- /dev/null
+++ b/1430/CH6/EX6.6/exa6_6.txt
@@ -0,0 +1,18 @@
+
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.6.sce', -1)
+
+ Current phasor in rectangular form(Amps)=
+
+ 4.6120953 + 4.8711987i
+
+ In polar form=
+
+ Magnitude=
+
+ 6.7082039
+
+ Phase angle(in degree)=
+
+ 46.565051
+ \ No newline at end of file
diff --git a/1430/CH6/EX6.8/exa6_8.jpg b/1430/CH6/EX6.8/exa6_8.jpg
new file mode 100644
index 000000000..dd8805895
--- /dev/null
+++ b/1430/CH6/EX6.8/exa6_8.jpg
Binary files differ
diff --git a/1430/CH6/EX6.8/exa6_8.sce b/1430/CH6/EX6.8/exa6_8.sce
new file mode 100644
index 000000000..a0063d1d9
--- /dev/null
+++ b/1430/CH6/EX6.8/exa6_8.sce
@@ -0,0 +1,36 @@
+// Example 6.8
+// AC Ladder Calculations
+I_m=10; // Magnitude of current phasor
+phase_i=0; // Phase angle of current phasor
+omega=50000; // Radian frequency (rad/s)
+L= 200*10^-3;//Henry
+C=2*10^-9; // Farad
+Z_R1=40000;
+Z_R2=5000;
+Z_L= %i*omega*L;
+Z_C=1/(%i*omega*C);
+Z_eq1=(Z_R2*Z_C)/(Z_R2+Z_C);
+Z_eq2= Z_L+Z_eq1;
+Z_eq=(Z_R1*Z_eq2)/(Z_R1+Z_eq2);
+I=complex(I_m,0); // current phasor in Rectangular form
+V=Z_eq*I;// Voltage phasor
+V_L=(Z_L*V)/(Z_L+Z_eq1);// Voltage phasor across inductor
+V_C=(Z_eq1*V)/(Z_L+Z_eq1);// Voltage phasor across capacitor
+V_m=abs(V);
+phase_v=atan(imag(V),real(V))*(180/%pi);
+V_L_m=abs(V_L);
+phase_v_l=atan(imag(V_L),real(V_L))*(180/%pi);
+V_C_m=abs(V_C);
+phase_v_c=atan(imag(V_C),real(V_C))*(180/%pi);
+t=0:0.5:10;
+v=V_m*cos(omega*t+atan(imag(V),real(V)));
+v_l=V_L_m*cos(omega*t+atan(imag(V_L),real(V_L)));
+v_c=V_C_m*cos(omega*t+atan(imag(V_C),real(V_C)));
+plot(t,v,'-r',t,v_l,'-g',t,v_c,'b')
+xlabel('t')
+ylabel('v')
+title('Voltage Waveform')
+h1=legend(['v(t)';'v_l(t)';'v_c(t)']);
+disp(V,"Voltage Phasor in rectangular form(Volts)=")
+disp(V_L,"Voltage Phasor across inductor in rectangular form(Volts)=")
+disp(V_C,"Voltage Phasor across capacitor in rectangular form(Volts)=")
diff --git a/1430/CH6/EX6.9/exa6_9.jpg b/1430/CH6/EX6.9/exa6_9.jpg
new file mode 100644
index 000000000..88fd33964
--- /dev/null
+++ b/1430/CH6/EX6.9/exa6_9.jpg
Binary files differ
diff --git a/1430/CH6/EX6.9/exa6_9.sce b/1430/CH6/EX6.9/exa6_9.sce
new file mode 100644
index 000000000..81df6c32d
--- /dev/null
+++ b/1430/CH6/EX6.9/exa6_9.sce
@@ -0,0 +1,32 @@
+// Example 6.9
+// AC Network With a Controlled Source
+// Form figure 6.22(b)
+V_m=20; // Voltage phasor magnitude
+phase_v=0; // voltage phasor phase
+omega=1000; // Radian frequency (rad/s)
+Z_R1=6;
+Z_R2=12;
+C=250*10^-6; // Farad
+L=8*10^-3; // Henry
+Z_C=1/(%i*omega*C);
+Z_L=%i*omega*L;
+// Using Proportionality Method
+I_2=complex(1,0); // Assumption
+V_x=Z_L*I_2; // Ohm's law in phasor form
+V_1=(Z_L+Z_R2)*I_2; // Ohm's law in phasor form
+I_1=V_1/Z_C;
+I_assumed=I_1+I_2; // KCL
+V_assumed=Z_R1*I_assumed-3*V_x+V_1
+// Hence input impedance
+Z=V_assumed/I_assumed;
+V=complex(V_m,0); // Actual Voltage phasor
+I=V/Z;
+I_1_actual=(I_1/I_assumed)*I;
+I_1_actual_m=abs(I_1_actual);
+phase_i_1_actual=atan(imag(I_1_actual),real(I_1_actual)); // Phase in radian
+t=0:0.1:10;
+plot(t,I_1_actual_m*cos(omega*t+phase_i_1_actual))
+xlabel("t")
+ylabel("i_1(t)")
+title('Current Waveform')
+disp(I_1_actual,"Current phasor in rectangular form(Amps)=")
diff --git a/1430/CH6/EX6.9/exa6_9.txt b/1430/CH6/EX6.9/exa6_9.txt
new file mode 100644
index 000000000..9e994b52f
--- /dev/null
+++ b/1430/CH6/EX6.9/exa6_9.txt
@@ -0,0 +1,7 @@
+
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 6\exa6.9.sce', -1)
+
+ Current phasor in rectangular form(Amps)=
+
+ - 3. + 11.i
+