diff options
Diffstat (limited to '1430/CH13')
-rw-r--r-- | 1430/CH13/EX13.10/exa13_10.jpg | bin | 0 -> 20723 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.10/exa13_10.sce | 26 | ||||
-rw-r--r-- | 1430/CH13/EX13.11/exa13_11.jpg | bin | 0 -> 63367 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.11/exa13_11.sce | 24 | ||||
-rw-r--r-- | 1430/CH13/EX13.12/exa13_12.jpg | bin | 0 -> 24703 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.12/exa13_12.sce | 29 | ||||
-rw-r--r-- | 1430/CH13/EX13.13/exa13_13.jpg | bin | 0 -> 22201 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.13/exa13_13.sce | 30 | ||||
-rw-r--r-- | 1430/CH13/EX13.16/exa13_16.jpg | bin | 0 -> 24935 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.16/exa13_16.sce | 22 | ||||
-rw-r--r-- | 1430/CH13/EX13.5/exa13_5.jpg | bin | 0 -> 21186 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.5/exa13_5.sce | 24 | ||||
-rw-r--r-- | 1430/CH13/EX13.6/exa13_6.jpg | bin | 0 -> 21318 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.6/exa13_6.sce | 25 | ||||
-rw-r--r-- | 1430/CH13/EX13.7/exa13_7.jpg | bin | 0 -> 50529 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.7/exa13_7.sce | 20 | ||||
-rw-r--r-- | 1430/CH13/EX13.8/exa13_8.jpg | bin | 0 -> 27344 bytes | |||
-rw-r--r-- | 1430/CH13/EX13.8/exa13_8.sce | 22 | ||||
-rw-r--r-- | 1430/CH13/EX13.8/exa13_8.txt | 8 |
19 files changed, 230 insertions, 0 deletions
diff --git a/1430/CH13/EX13.10/exa13_10.jpg b/1430/CH13/EX13.10/exa13_10.jpg Binary files differnew file mode 100644 index 000000000..d6c3c1820 --- /dev/null +++ b/1430/CH13/EX13.10/exa13_10.jpg diff --git a/1430/CH13/EX13.10/exa13_10.sce b/1430/CH13/EX13.10/exa13_10.sce new file mode 100644 index 000000000..63e266d34 --- /dev/null +++ b/1430/CH13/EX13.10/exa13_10.sce @@ -0,0 +1,26 @@ +// Example 13.10
+// Step Response
+// From figure 13.9(a)
+t=0:0.01:10
+L=1;
+R=2;
+C=1/16;
+// from figure 13.9(b)
+s=%s;
+Z_s=s+32/(2*s+16);
+H_s=1/(Z_s); // Network transfer function
+V_s=1/s;// Laplace transform of Voltage source
+I_s=H_s*V_s; // Transform of the step response
+pfe=pfss(I_s); // Partial fraction expansion
+
+// Inverse Laplace transform of pfe(1)
+i_1=0.5;
+
+// Inverse Laplace Transfrom of pfe(2)
+i_2=-(0.5*exp(-4*t)+t.*exp(-4*t))
+
+i=i_1+i_2;
+plot(t,i)
+xlabel('t')
+ylabel('i(t)')
+title("Step Response")
diff --git a/1430/CH13/EX13.11/exa13_11.jpg b/1430/CH13/EX13.11/exa13_11.jpg Binary files differnew file mode 100644 index 000000000..ceb0847fe --- /dev/null +++ b/1430/CH13/EX13.11/exa13_11.jpg diff --git a/1430/CH13/EX13.11/exa13_11.sce b/1430/CH13/EX13.11/exa13_11.sce new file mode 100644 index 000000000..ece7f1f38 --- /dev/null +++ b/1430/CH13/EX13.11/exa13_11.sce @@ -0,0 +1,24 @@ +// Example 13.11
+// Zero-State AC Response
+t=0:0.01:10
+s=%s;
+H_s=(s+8)/(s+4)^2;// Network transfer function
+V_s=(50*s)/(s^2+64); // Laplace transform of voltage source
+I_s=H_s*V_s;
+pfe=pfss(I_s);
+I_N_s=pfe(2); // Natural response in s-domain
+// Taking inverse laplace transform of pfe(2) we get,
+i_N=-exp(-4*t)-10*t.*exp(-4*t);
+
+// For Forced response component
+V_S=complex(50,0); // Voltage source phasor
+H=horner(H_s,%i*8);
+I=H*V_S;
+I_m=abs(I);
+phase_I=atan(imag(I),real(I));
+i_F=I_m*cos(8*t+phase_I);
+i=i_N+i_F;
+plot(t,i);
+xlabel('t')
+ylabel('i(t)')
+title('Zero-state ac Response Waveform')
diff --git a/1430/CH13/EX13.12/exa13_12.jpg b/1430/CH13/EX13.12/exa13_12.jpg Binary files differnew file mode 100644 index 000000000..0d770815c --- /dev/null +++ b/1430/CH13/EX13.12/exa13_12.jpg diff --git a/1430/CH13/EX13.12/exa13_12.sce b/1430/CH13/EX13.12/exa13_12.sce new file mode 100644 index 000000000..61bbd7d43 --- /dev/null +++ b/1430/CH13/EX13.12/exa13_12.sce @@ -0,0 +1,29 @@ +// Example 13.12
+// Calculating a Zero-Input Response
+L=2;
+R=20;
+C=1/200;
+s=%s;
+// for t<0
+i_L_bef=6;
+v_C_bef=20*i_L_bef;
+// for t>0 ,figure 13.13(b)
+
+//Applying Mesh equation for I_L_s
+I_L_s=(12+120/s)/(2*s+20+100/s);
+// I_L_s has the form (Bs+C)/(s^2+2*alpha*s+omega_0^2) comparing these equations
+// we get
+B=6;
+C=60;
+alpha=5;
+omega_o=50
+beta=5;
+K=complex(6,-6);
+K_m=abs(K);
+phase_K=atan(imag(K),real(K))
+t=0:0.001:5;
+i_L=K_m*exp(-alpha*t).*cos(beta*t+phase_K); // t>=0
+plot(t,i_L)
+xlabel('t')
+ylabel('i_L(t)')
+title('Current Waveform')
diff --git a/1430/CH13/EX13.13/exa13_13.jpg b/1430/CH13/EX13.13/exa13_13.jpg Binary files differnew file mode 100644 index 000000000..e20cd4694 --- /dev/null +++ b/1430/CH13/EX13.13/exa13_13.jpg diff --git a/1430/CH13/EX13.13/exa13_13.sce b/1430/CH13/EX13.13/exa13_13.sce new file mode 100644 index 000000000..4f29e103d --- /dev/null +++ b/1430/CH13/EX13.13/exa13_13.sce @@ -0,0 +1,30 @@ +// Example 13.13
+// Calculating a Complex Response
+L=0.5;
+R=5;
+C=1/40;
+s=%s;
+v_s1=20; //t<0
+v_s2=-20; // t>=0
+// from figure 13.14(a), for t<0
+i_L_bef=v_s1/R;
+v_C_bef=20;
+// Laplace transform of the input signal for t>=0
+V_s=-20/s;
+
+// Inspection of figure 13.13(b) yields the systematic node equation
+// (s/40+1/5+1/(0.5*s))*V_C_s=(2-20/s)/(0.5*s)+0.5
+num=20*(s^2+8*s-80);
+den=(s*(s^2+8*s+80));
+V_C_s=num/den; // Voltage across capacitor
+pfe=pfss(V_C_s); // Partial fraction expansion
+t=0:0.001:10
+// inverse Laplace tranform of pfe(1)
+v_C1=-20;
+// inverse Laplace transform of pfe(2)
+v_C2=20*sqrt(5)*exp(-4*t).*cos(8*t-(%pi/180)*(26.6));
+v_C=v_C1+v_C2; // t>0
+plot(t,v_C)
+xlabel('t')
+ylabel('v_C(t)')
+title("Capacitor Voltage Waveform")
diff --git a/1430/CH13/EX13.16/exa13_16.jpg b/1430/CH13/EX13.16/exa13_16.jpg Binary files differnew file mode 100644 index 000000000..f9579b68c --- /dev/null +++ b/1430/CH13/EX13.16/exa13_16.jpg diff --git a/1430/CH13/EX13.16/exa13_16.sce b/1430/CH13/EX13.16/exa13_16.sce new file mode 100644 index 000000000..6e91b4760 --- /dev/null +++ b/1430/CH13/EX13.16/exa13_16.sce @@ -0,0 +1,22 @@ +// Example 13.16
+// Impulsive Zero -State Response
+C_1=1/20;
+C_2=1/20;
+R=5;
+L=1;
+s=%s;
+Z_s=1/(s*C_1)+1/((s*C_2)+1/R+1/(s*L)); // Overall impedance of the circuit
+V_s=80/s;
+I_s=V_s/Z_s;
+t=0:0.01:10
+pfe=pfss(I_s);
+// Taking inverse Laplace transfrom we get
+// Inverse laplace transform of pfe(1)
+i_1=4.80*exp(-t).*cos(3*t-((%pi*33.7)/180));
+//inverse laplace of pfe(2)
+i_2=2;
+i=i_1+i_2;
+plot(t,i)
+xlabel('t')
+ylabel('i(t)')
+title("Current waveform")
diff --git a/1430/CH13/EX13.5/exa13_5.jpg b/1430/CH13/EX13.5/exa13_5.jpg Binary files differnew file mode 100644 index 000000000..ac03a39ac --- /dev/null +++ b/1430/CH13/EX13.5/exa13_5.jpg diff --git a/1430/CH13/EX13.5/exa13_5.sce b/1430/CH13/EX13.5/exa13_5.sce new file mode 100644 index 000000000..70ab20b30 --- /dev/null +++ b/1430/CH13/EX13.5/exa13_5.sce @@ -0,0 +1,24 @@ +// Example 13.5
+// Inversion of a Third-order Function
+R=12;
+L=1;
+C=1/20;
+I_1=-2;
+I_2=2;
+s=%s;
+num=I_1*s^2+(R/L)*I_1*s+I_2/(L*C);
+den=s*(s^2+(R/L)*s+1/(L*C));
+I_s=num/den;
+pfe=pfss(I_s);
+// From partial fraction expansion
+A_1=2;
+A_2=-5;
+A_3=1;
+s=roots(den);
+// Taking the inverse Laplace transform we get
+t=0:0.001:10
+i=2*exp(s(3)*t)+A_2*exp(s(2)*t)+A_3*exp(s(1)*t)
+plot(t,i)
+xlabel('t')
+ylabel('i(t)')
+title('Current Waveform')
diff --git a/1430/CH13/EX13.6/exa13_6.jpg b/1430/CH13/EX13.6/exa13_6.jpg Binary files differnew file mode 100644 index 000000000..64df3be12 --- /dev/null +++ b/1430/CH13/EX13.6/exa13_6.jpg diff --git a/1430/CH13/EX13.6/exa13_6.sce b/1430/CH13/EX13.6/exa13_6.sce new file mode 100644 index 000000000..e0456e7c4 --- /dev/null +++ b/1430/CH13/EX13.6/exa13_6.sce @@ -0,0 +1,25 @@ +// Example 13.6
+// Inversion with complex Poles
+s=%s;
+t=0:0.001:10
+num=15*s^2-16*s-7;
+den=(s+2)*(s^2+6*s+25);
+F_s=num/den;
+pfe=pfss(F_s); // partial fraction of the transfer function
+// from pfe(1) we get
+B=10;
+C=-66;
+alpha=3;// from pfe(1)
+beta=sqrt(25-9);//Comparing the denominator of pfe(1) with standard 2nd orderequation
+// Now
+K=B+(%i*(alpha*B-C))/beta;
+// From inverse Laplace Transfrom of pfe(2) we get
+f1=5*exp(-2*t)
+K_m=abs(K); // Magnitude of K
+phase_K=atan(imag(K),real(K));
+g=K_m*exp(-alpha*t).*cos(beta*t+phase_K);
+f=f1+g;
+plot(t,f)
+xlabel('t')
+ylabel('f(t)')
+title('Function Waveform')
diff --git a/1430/CH13/EX13.7/exa13_7.jpg b/1430/CH13/EX13.7/exa13_7.jpg Binary files differnew file mode 100644 index 000000000..39de9871e --- /dev/null +++ b/1430/CH13/EX13.7/exa13_7.jpg diff --git a/1430/CH13/EX13.7/exa13_7.sce b/1430/CH13/EX13.7/exa13_7.sce new file mode 100644 index 000000000..a126e2e5d --- /dev/null +++ b/1430/CH13/EX13.7/exa13_7.sce @@ -0,0 +1,20 @@ +//Example 13.7
+// Inversion with a Triple pole
+s=%s;
+num=-s^2-2*s+14;
+den=(s+4)^3*(s+5);
+F=num/den;
+pfe=pfss(F)
+t=0:0.001:10
+// Inverse Laplace transform of pfe(2)
+f1=1*%e^(-5*t);
+
+// Inverse Laplace transform of pfe(1)
+f2=-exp(-4*t)+3*(t.*t).*exp(-4*t);
+
+f=f1+f2;// t>=0;
+plot(t,f);
+xlabel('t');
+ylabel('f(t)');
+title("Function Waveform")
+
diff --git a/1430/CH13/EX13.8/exa13_8.jpg b/1430/CH13/EX13.8/exa13_8.jpg Binary files differnew file mode 100644 index 000000000..5c2a26755 --- /dev/null +++ b/1430/CH13/EX13.8/exa13_8.jpg diff --git a/1430/CH13/EX13.8/exa13_8.sce b/1430/CH13/EX13.8/exa13_8.sce new file mode 100644 index 000000000..f0ad8cb85 --- /dev/null +++ b/1430/CH13/EX13.8/exa13_8.sce @@ -0,0 +1,22 @@ +// Example 13.8
+// Inversion with Time delay
+s=%s;
+// x(t)=20*u(t)40*u(t-3)
+// time domain analysis for the response y(t) yields the DE
+// y'(t)-5*y(t)=-x(t)=-20*u(t)+40*u(t-3)--equation (1)
+// after taking Laplace transform of equation (1)
+disp("Y(s)=(-20+40*exp(-3*s))/(s*(s-5)");
+disp("=> Y(s)= F1_s-2*F1_s*exp(-3*t)")
+F1_s= -20/(s*(s-5));
+pfe=pfss(F1_s);
+
+// Taking inverse Laplace of pfe, we get
+f1=4-4*exp(5*t);
+
+t=0:0.001:5;
+//from expansion of Y(s)
+y=4-4*exp(5*t)-(8-8*exp(5*(t-3))); // Using Time delay property , t>=0
+plot(t,y)
+xlabel('t')
+ylabel('y(t)')
+title('Function Waveform')
diff --git a/1430/CH13/EX13.8/exa13_8.txt b/1430/CH13/EX13.8/exa13_8.txt new file mode 100644 index 000000000..971ca0be4 --- /dev/null +++ b/1430/CH13/EX13.8/exa13_8.txt @@ -0,0 +1,8 @@ +
+-->exec('C:\Users\sangeet\Documents\Scilab\Circuits\Chapter 13\exa13_8.sce', -1)
+
+ Y(s)=(-20+40*exp(-3*s))/(s*(s-5)
+
+ => Y(s)= F1_s-2*F1_s*exp(-3*t)
+
+
|