diff options
Diffstat (limited to '1394/CH8')
-rwxr-xr-x | 1394/CH8/EX8.1.1/Ex8_1_1.sce | 15 | ||||
-rwxr-xr-x | 1394/CH8/EX8.1.2/Ex8_1_2.sce | 12 | ||||
-rwxr-xr-x | 1394/CH8/EX8.1.3/Ex8_1_3.sce | 10 | ||||
-rwxr-xr-x | 1394/CH8/EX8.1.4/Ex8_1_4.sce | 15 | ||||
-rwxr-xr-x | 1394/CH8/EX8.2.1/Ex8_2_1.sce | 15 | ||||
-rwxr-xr-x | 1394/CH8/EX8.2.2/Ex8_2_2.sce | 18 | ||||
-rwxr-xr-x | 1394/CH8/EX8.3.1/Ex8_3_1.sce | 12 | ||||
-rwxr-xr-x | 1394/CH8/EX8.3.2/Ex8_3_2.sce | 24 | ||||
-rwxr-xr-x | 1394/CH8/EX8.5.1/Ex8_5_1.sce | 18 | ||||
-rwxr-xr-x | 1394/CH8/EX8.5.2/Ex8_5_2.sce | 15 | ||||
-rwxr-xr-x | 1394/CH8/EX8.5.3/Ex8_5_3.sce | 10 | ||||
-rwxr-xr-x | 1394/CH8/EX8.5.4/Ex8_5_4.sce | 14 |
12 files changed, 178 insertions, 0 deletions
diff --git a/1394/CH8/EX8.1.1/Ex8_1_1.sce b/1394/CH8/EX8.1.1/Ex8_1_1.sce new file mode 100755 index 000000000..95ce8a955 --- /dev/null +++ b/1394/CH8/EX8.1.1/Ex8_1_1.sce @@ -0,0 +1,15 @@ + +clc
+//initiliazation of variables
+Vap = (0.05/22.4)*23.8/760 // Vapour concentration
+V = 18.4*10^3 // Air Volume in cc
+A = 150 // Liquid Area in Cm^2
+t1 = 180 // Time in sec
+N1 = (Vap*V)/(A*t1)
+k = 3.4*10^-2 // cm/sec
+C = 0.9
+//Calculations
+t = (-V/(k*A))*log(1 - C)
+thr = t/3600
+//Results
+printf("the time taken to reach 90 percent saturation is %.3f hr",thr)
diff --git a/1394/CH8/EX8.1.2/Ex8_1_2.sce b/1394/CH8/EX8.1.2/Ex8_1_2.sce new file mode 100755 index 000000000..5818dd41c --- /dev/null +++ b/1394/CH8/EX8.1.2/Ex8_1_2.sce @@ -0,0 +1,12 @@ + +
+clc
+//initialization of variables
+Vo = 5 // cm/sec
+a = 23 //cm^2/cm^3
+z = 100 //cm
+Crat = 0.62 // Ratio of c/Csat
+//Calculations
+k = -(Vo/(a*z))*log(1-Crat)
+//Results
+printf("the mass transfer co efficient is %.1e cm/sec",k)
diff --git a/1394/CH8/EX8.1.3/Ex8_1_3.sce b/1394/CH8/EX8.1.3/Ex8_1_3.sce new file mode 100755 index 000000000..b16e02f64 --- /dev/null +++ b/1394/CH8/EX8.1.3/Ex8_1_3.sce @@ -0,0 +1,10 @@ + +
+clc
+//initialization of variables
+t = 3*60 // seconds
+crat = 0.5 // Ratio of c and csat
+//calculations
+ka = -(1/t)*log(1-crat)
+//results
+printf("the mass transfer co efficient along the product with a is %.1e sec^-1",ka)
diff --git a/1394/CH8/EX8.1.4/Ex8_1_4.sce b/1394/CH8/EX8.1.4/Ex8_1_4.sce new file mode 100755 index 000000000..630537ad8 --- /dev/null +++ b/1394/CH8/EX8.1.4/Ex8_1_4.sce @@ -0,0 +1,15 @@ + +
+clc
+//initialiazation of variables
+rin = 0.05 // initial radius of oxygen bubble in cm
+rf = 0.027 //final radius of oxygen bubble in cm
+tin = 0 // initial time in seconds
+tf = 420 // final time in seconds
+c1 = 1/22.4 // oxygen concentration in the bubble in mol/litres
+c1sat = 1.5*10^-3 // oxygen concentration outside which is saturated in mol/litres
+//Calculations
+k = -((rf-rin)/(tf-tin))*(c1/c1sat)
+//Results
+printf("The mass transfer co efficient is %.1e cm/sec",k)
+
diff --git a/1394/CH8/EX8.2.1/Ex8_2_1.sce b/1394/CH8/EX8.2.1/Ex8_2_1.sce new file mode 100755 index 000000000..b145cca9b --- /dev/null +++ b/1394/CH8/EX8.2.1/Ex8_2_1.sce @@ -0,0 +1,15 @@ + +
+clc
+//initialization of variables
+kc = 3.3*10^-3 // M.T.C in cm/sec
+d = 1 // density of oxygen in g/cm^3
+M = 18 // Mol wt of water in g/mol
+Hatm = 4.4*10^4 // Henrys constant in atm
+HmmHg = Hatm*760 // Henrys constant in mm Hg
+//calculations
+ratio = d/(M*HmmHg)// Ratio of concentration and pressure of oxygen
+kp = kc*ratio // M.T.O=C in x*10^12mol/cm^2-sec-mm Hg
+//Results
+printf("the M.T.C in given units is %.1e",kp )
+
diff --git a/1394/CH8/EX8.2.2/Ex8_2_2.sce b/1394/CH8/EX8.2.2/Ex8_2_2.sce new file mode 100755 index 000000000..63b9842c7 --- /dev/null +++ b/1394/CH8/EX8.2.2/Ex8_2_2.sce @@ -0,0 +1,18 @@ + +
+clc
+//initialization of variables
+k1 = 1.18 // M.T.C in lb-mol NH3/hr-ft^2
+k2 = 1.09 // M.T.C in lb-mol NH3/hr-ft^2
+M2 = 18 // Mol wt of NH3 in lb/mol
+d = 62.4 // Density of NH3 in lb/ft^3
+c1 = 30.5 // Conversion factor from ft to cm
+c2 = 1/3600 // Conversion factor from seconds to hour
+R = 1.314 // Gas constant in atm-ft^3/lb-mol-K
+T = 298 // Temperature in Kelvin scale
+//Calculations
+kf1 = (M2/d)*k1*c1*c2 // M.T.C in cm/sec
+kf2 = R*T*k2*c1*c2 // M.T.C in cm/sec
+//Results
+printf("the M.T.C for liquid is %.1e cm/sec",kf1)
+printf("\n the M.T.C for gas is %.1f cm/sec",kf2)
diff --git a/1394/CH8/EX8.3.1/Ex8_3_1.sce b/1394/CH8/EX8.3.1/Ex8_3_1.sce new file mode 100755 index 000000000..e4bcca8fc --- /dev/null +++ b/1394/CH8/EX8.3.1/Ex8_3_1.sce @@ -0,0 +1,12 @@ + +clc
+//initialization of variables
+l = 0.07 // flim thickness in cm
+v = 3 // water flow in cm/sec
+D = 1.8*10^-5 // diffusion coefficient in cm^2/sec
+crat = 0.1 // Ratio of c1 and c1(sat)
+//Calculations
+z = (((l^2)*v)/(1.38*D))*((log(1-crat))^2) //Column length
+//Results
+printf("the column length needed is %.1f cm",z)
+
diff --git a/1394/CH8/EX8.3.2/Ex8_3_2.sce b/1394/CH8/EX8.3.2/Ex8_3_2.sce new file mode 100755 index 000000000..e8002c4d0 --- /dev/null +++ b/1394/CH8/EX8.3.2/Ex8_3_2.sce @@ -0,0 +1,24 @@ + +clc
+//Initialization of variables
+Dw = 1*10^-5 // Diffusion co efficient in cm^2/sec
+omeg = 20*2*%pi/60 // disc rotation in /sec
+Nuw = 0.01 // Kinematic viscousity in water in cm^2/sec
+Da = 0.233 // Diffusion co efficient in cm^2/sec
+Nua = 0.15 // Kinematic viscousity in air in cm^2/sec
+c1satw = 0.003 // Solubility of benzoic acid in water in gm/cm^3
+p1sat = 0.30 // Equilibrium Vapor pressure in mm Hg
+ratP = 0.3/760 // Ratio of pressures
+c1 = 1/(22.4*10^3) // Moles per volume
+c2 = 273/298 // Ratio of temperatures
+c3 = 122 // Grams per mole
+//Calculations
+kw = 0.62*Dw*((omeg/Nuw)^0.5)*((Nuw/Dw)^(1/3))// cm/sec
+Nw = kw*c1satw*10^6 // mass flux in x*10^-6 in g/cm^2-sec
+ka = 0.62*Da*((omeg/Nua)^0.5)*((Nua/Da)^(1/3))//cm/sec
+c1sata = ratP*c1*c2*c3// Solubility of benzoic acid in air in gm/cm^3
+Na = ka*c1sata*10^6 // mass flux in x*10^-6 in g/cm^2-sec
+//Results
+printf ("the mass flux in water is %.1f x10^-6 g/cm^2-sec",Nw)
+printf("\n the mass flux in air is %.1f x10^-6 g/cm^2-sec",Na)
+
diff --git a/1394/CH8/EX8.5.1/Ex8_5_1.sce b/1394/CH8/EX8.5.1/Ex8_5_1.sce new file mode 100755 index 000000000..38f67f318 --- /dev/null +++ b/1394/CH8/EX8.5.1/Ex8_5_1.sce @@ -0,0 +1,18 @@ + +
+clc
+//initialization of variables
+Dl=2.1*10^-5// Diffusion co efficient for Oxygen in air in cm^2/sec
+Dg = 0.23 //Diffusion co efficient for Oxygen in water in cm^2/sec
+R = 82 // Gas constant in cm^3-atm/g-mol-K
+T = 298 //Temperature in Kelvin
+l1 = 0.01 // film thickness in liquids in cm
+l2 = 0.1 // film thickness in gases in cm
+H1 = 4.3*10^4 // Henrys constant in atm
+c = 1/18 // concentration of water in g-mol/cm^3
+//Calculations
+kl = (Dl/l1)*c // m.t.c in liquid phase in mol/cm^2/sec
+kp = (Dg/l2)/(R*T)// m.t.c in gas phase in gmol/cm^2-sec-atm
+KL = 1/((1/kl)+(1/(kp*H1)))// Overall m.t.c in mol/cm^2-sec liquid phase
+//Results
+printf("The overall m.t.c in liquid side is %.1e mol/cm^2-sec",KL)
diff --git a/1394/CH8/EX8.5.2/Ex8_5_2.sce b/1394/CH8/EX8.5.2/Ex8_5_2.sce new file mode 100755 index 000000000..b66d06a84 --- /dev/null +++ b/1394/CH8/EX8.5.2/Ex8_5_2.sce @@ -0,0 +1,15 @@ + +clc +//initialization of variables +Dl=1.9*10^-5// Diffusion co efficient for liquid phase in cm^2/sec +Dg = 0.090 //Diffusion co efficient for gas phase in cm^2/sec +R = 82 // Gas constant in cm^3-atm/g-mol-K +T = 363 //Temperature in Kelvin +H1 = 0.70 // Henrys constant in atm +c = 1/97 // concentration of water in g-mol/cm^3 +//Calculations +kl = (Dl/0.01)*c // m.t.c in liquid phase in mol/cm^2/sec +kp = (Dg/0.1)/(R*T)// m.t.c in gas phase in gmol/cm^2-sec-atm +KL = 1/((1/kl)+(1/(kp*H1)))*10^5// Overall m.t.c in x*10^-5 mol/cm^2-secliquid phase +//Results +printf("The overall m.t.c in liquid side is %.2f x10^-5 mol/cm^2-sec",KL)// answer wrong in textbook diff --git a/1394/CH8/EX8.5.3/Ex8_5_3.sce b/1394/CH8/EX8.5.3/Ex8_5_3.sce new file mode 100755 index 000000000..e91b87cb5 --- /dev/null +++ b/1394/CH8/EX8.5.3/Ex8_5_3.sce @@ -0,0 +1,10 @@ + +clc
+//Initialization of variables
+k1 = 3.0*10^-4 // m.t.c in benzene in cm/sec
+k2 = 2.4*10^-3 // m.t.c in water in cm/sec
+ratio = 150 // Solubility ratio in benzene to water
+//Calculations
+K1 = (1/((1/k1)+(ratio/k2)))*10^5 // Overall m.t.c through benzene phase in x*10^-5 cm/sec
+//Results
+printf("The overall M.T.C through benzene phase is %.1f x10^-5 cm/sec",K1)
diff --git a/1394/CH8/EX8.5.4/Ex8_5_4.sce b/1394/CH8/EX8.5.4/Ex8_5_4.sce new file mode 100755 index 000000000..2ec89501c --- /dev/null +++ b/1394/CH8/EX8.5.4/Ex8_5_4.sce @@ -0,0 +1,14 @@ + +clc
+//initialization of variables
+H1 = 75 // henrys constant for ammonia in atm
+H2 = 41000 // henrys constant for methane in atm
+p = 2.2 // pressure in atm
+kya = 18 // product of m.t.c and packing area per tower volume in lb-mol/hr-ft^3
+kxa = 530 //product of m.t.c and packing area per tower volume in lb-mol/hr-ft^3
+//calcuations
+Kya1 = 1/((1/kya) + (H1/p)/kxa) //The overall coefficient for ammonia in lb-mol/hr-ft^3
+Kya2 = 1/((1/kya) + (H2/p)/kxa) //The overall coefficient for methane in lb-mol/hr-ft^3
+//Results
+printf("The overall coefficient for ammonia is %.1f lb-mol/hr-ft^3",Kya1)
+printf("\n The overall coefficient for methane is %.2f lb-mol/hr-ft^3",Kya2)
|