summaryrefslogtreecommitdiff
path: root/1358/CH1
diff options
context:
space:
mode:
Diffstat (limited to '1358/CH1')
-rwxr-xr-x1358/CH1/EX1.1/Example11.sce18
-rwxr-xr-x1358/CH1/EX1.10/Example110.sce15
-rwxr-xr-x1358/CH1/EX1.2/Example12.sce12
-rwxr-xr-x1358/CH1/EX1.3/Example13.sce12
-rwxr-xr-x1358/CH1/EX1.4/Example14.sce10
-rwxr-xr-x1358/CH1/EX1.5/Example15.sce10
-rwxr-xr-x1358/CH1/EX1.6/Example16.sce15
-rwxr-xr-x1358/CH1/EX1.7/Example17.sce20
-rwxr-xr-x1358/CH1/EX1.8/Example18.sce16
-rwxr-xr-x1358/CH1/EX1.9/Example19.sci11
10 files changed, 139 insertions, 0 deletions
diff --git a/1358/CH1/EX1.1/Example11.sce b/1358/CH1/EX1.1/Example11.sce
new file mode 100755
index 000000000..e158c960b
--- /dev/null
+++ b/1358/CH1/EX1.1/Example11.sce
@@ -0,0 +1,18 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 1")
+//Linear ratio L = Lp/Lm = Bp/Bm = Dp/Dm
+// We know P1/(rho1*(N1)^3*(D1)^5) = P2/(rho2*(N2)^3*(D2)^5)
+//Pressure equation rho1 = rho2
+//Hence, D2/D1 = 0.238(N1/N2)^(3/5)
+//Also (g*H1)/(N1*D1)^2 = (g*H2)/(N2*D2)^2
+//Therefore 0.238 (N1/N2)^(3/5) = (6/16)^(N1/N2)
+//Hence, (N2/N1)^(2/5) = 2.57
+disp ("Therefore Model Speed N2 in rpm, Model Scale Ratio RD and Volume flow rate(Q)in cubic meters per second are:")
+N2 = 100 * 2.57^(5/2)
+RD = 0.238 * (100/1059)^(3/5)
+Q = 42 * 1000 / (0.92*1000*9.81*6)
diff --git a/1358/CH1/EX1.10/Example110.sce b/1358/CH1/EX1.10/Example110.sce
new file mode 100755
index 000000000..1d9f684f0
--- /dev/null
+++ b/1358/CH1/EX1.10/Example110.sce
@@ -0,0 +1,15 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 10")
+//Given conditions
+//r1 = 0.14m
+//Cw1 = 340m/s
+//r2 = 0.07m
+//Cw2 = 50m/s
+//Torque = r1*Cw1 - r2*Cw2
+disp("Torque in Nm kg/s implies => ")
+T = 0.14*340-0.07*50
diff --git a/1358/CH1/EX1.2/Example12.sce b/1358/CH1/EX1.2/Example12.sce
new file mode 100755
index 000000000..b4d6e4298
--- /dev/null
+++ b/1358/CH1/EX1.2/Example12.sce
@@ -0,0 +1,12 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 2")
+// While equating flow coefficients Q1 / (N1 * D1^3) = Q2 / (N2 * D2^30)
+//Also the head equation we follow is g*H1/(N1^2*D1^2) = g*H2/(N2^2*D2^2)
+disp("Volume flow rate in cubic meters per second and Head in meters are:")
+Q2 = 2.5*2210*(0.104)^3/(2010*(0.125)^3)
+H2 = 9.81 * 14 * (2210*104)^2 /(((2010*125)^2)*(9.81))
diff --git a/1358/CH1/EX1.3/Example13.sce b/1358/CH1/EX1.3/Example13.sce
new file mode 100755
index 000000000..0df1e924f
--- /dev/null
+++ b/1358/CH1/EX1.3/Example13.sce
@@ -0,0 +1,12 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 3")
+//The Speed Parameter Equation (N1/T01^(1/2)) = (N2/T02^(1/2))
+//Also the mass flow Parameters m1 * (T01^2)/p01 = m2 * (T02^2)/p02
+disp("The Compressor speed in rpm, mass flow rate in kg per s are: ")
+N2 = 5000 * ((273+25)^(1/2)/(273+18)^(1/2))
+m2 = 64 * (65/101.3) * (291/298)^0.5
diff --git a/1358/CH1/EX1.4/Example14.sce b/1358/CH1/EX1.4/Example14.sce
new file mode 100755
index 000000000..c9222fb96
--- /dev/null
+++ b/1358/CH1/EX1.4/Example14.sce
@@ -0,0 +1,10 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 4")
+disp ("Theoritical Question")
+//liquid discharge rate Q; head H;specific weight of the liquid is w.
+disp("Expression for Pumping power is P = kwQH")
diff --git a/1358/CH1/EX1.5/Example15.sce b/1358/CH1/EX1.5/Example15.sce
new file mode 100755
index 000000000..222223fbc
--- /dev/null
+++ b/1358/CH1/EX1.5/Example15.sce
@@ -0,0 +1,10 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 5")
+disp ("Theoritical Question")
+//V is the velocity of the body, l is the linear dimension, rho is the fluid density, k is the rms height of surface roughness and g is the gravitational acceleration
+disp("Functional Relationship for Force F may be: F = V^2 * l^2 * rho * f(k/l , l*g/V^2)")
diff --git a/1358/CH1/EX1.6/Example16.sce b/1358/CH1/EX1.6/Example16.sce
new file mode 100755
index 000000000..538cd2357
--- /dev/null
+++ b/1358/CH1/EX1.6/Example16.sce
@@ -0,0 +1,15 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 6")
+// Geometric and Dynamic similarity equations Q1 / (N1 * D1^2) = Q2 / (N2 * D2^2)
+// Head coefficient W2 = W1 * N2^2 * D2^2 / (N1^2 * D1 ^2)
+// Also Pressure Delta P = W2 * eta tt * rho
+disp("Flow rate in cubic meters per minute , Head coefficient in J/kg, Change in Total Pressure in bar , Input Power P in kilowatt are : ")
+Q2 = 2.5 * 2900 * 0.22^2 / (1450 * 0.32^2)
+W2 = 120 * 2900 ^ 2 * 0.22 ^ 2 / ((1450)^2 * 0.32^2)
+Pressure = 226.88 * 0.78 * 1000 /100000
+P = 1000 * 2.363 * 0.22688 / 60
diff --git a/1358/CH1/EX1.7/Example17.sce b/1358/CH1/EX1.7/Example17.sce
new file mode 100755
index 000000000..10006b7ed
--- /dev/null
+++ b/1358/CH1/EX1.7/Example17.sce
@@ -0,0 +1,20 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 7")
+// Using isentropic P-T Relation T02' = T01 * (P02/P01) ^ (gamm - 1 / 2)
+//Total to total Efficiency etta tt implies T01 - T02 = (T01 - T02") * ettatt
+//Power input W1 = cp * delta To
+//Power output W2 = W1 * N2 ^ 2 * D2 ^ 2 / (N1 * D2)^2
+ettatt = 0.85;
+T01 = 1050;
+gamm = 1.4;
+T02 = T01 * (1/4)^((1.4-1)/2);
+disp("Power input in KJ/Kg and Power output in KJ/Kg are :")
+W1 = 1.005 * 292.13
+W2 = 293.59 * 1000 * 12500 ^ 2 * .2 ^ 2 / (15500^2 * 0.3^2)
+disp("Therefore power output = ")
+Power = W2/1000
diff --git a/1358/CH1/EX1.8/Example18.sce b/1358/CH1/EX1.8/Example18.sce
new file mode 100755
index 000000000..25cbdd9d1
--- /dev/null
+++ b/1358/CH1/EX1.8/Example18.sce
@@ -0,0 +1,16 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 8")
+//Let us suppose
+//Velocity of the model, Vm
+//Length of the model, Lm = 160mm
+//Length of the prototype Lp = 1000mm
+//Velocity of the prototype Vp = 40.5m/s
+//According to (Re)m = (Re)p
+//Also Vm*Lm/vm = Vp*Lp/vp
+disp("Velocity of wind(m/s) in the tunnel implies = ")
+Vm = 40.5 * 1000 / 160
diff --git a/1358/CH1/EX1.9/Example19.sci b/1358/CH1/EX1.9/Example19.sci
new file mode 100755
index 000000000..d52dbc129
--- /dev/null
+++ b/1358/CH1/EX1.9/Example19.sci
@@ -0,0 +1,11 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 9")
+//Theoritical Question
+//Kinetic Energy Equation
+disp("The Kinetic Energy => k V^2 m ")
+disp("Where k is a constant")