diff options
Diffstat (limited to '1328/CH9')
-rw-r--r-- | 1328/CH9/EX9.1/9_1.sce | 109 | ||||
-rw-r--r-- | 1328/CH9/EX9.2/9_2.sce | 65 | ||||
-rw-r--r-- | 1328/CH9/EX9.3/9_3.sce | 17 |
3 files changed, 191 insertions, 0 deletions
diff --git a/1328/CH9/EX9.1/9_1.sce b/1328/CH9/EX9.1/9_1.sce new file mode 100644 index 000000000..e0055f724 --- /dev/null +++ b/1328/CH9/EX9.1/9_1.sce @@ -0,0 +1,109 @@ +printf("\t example 9.1 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=245; // inlet hot fluid,F
+T2=95; // outlet hot fluid,F
+t1=85; // inlet cold fluid,F
+t2=95; // outlet cold fluid,F
+W=9872; // lb/hr
+w=78500; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for ammonia gas \n");
+c=0.53; // Btu/(lb)*(F)
+Q=((W)*(c)*(T1-T2)); // Btu/hr
+printf("\t total heat required for ammonia gas is : %.2e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for water is : %.2f Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+R=((T1-T2)/(t2-t1));
+printf("\t R is : %.0f \n",R);
+S=((t2-t1)/(T1-t1));
+printf("\t S is : %.4f \n",S);
+printf("\t FT is 0.837 \n"); // from fig 18
+delt=(0.837*LMTD); // F
+printf("\t delt is : %.1f F \n",delt);
+Tc=((T2)+(T1))/2; // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
+tc=((t1)+(t2))/2; // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+printf("\t hot fluid:shell side,ammonia at 83psia \n");
+ID=23.25; // in
+C=0.1875; // clearance
+B=12; // baffle spacing,in
+PT=0.937;
+as=((ID*C*B)/(144*PT)); // flow area,ft^2,from eq 7.1
+printf("\t flow area is : %.3f ft^2 \n",as);
+Gs=(W/as); // mass velocity,lb/(hr)*(ft^2),from eq 7.2
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+mu1=0.012*2.42; // at 170F,lb/(ft)*(hr), from fig.15
+De=0.55/12; // from fig.28,ft
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.2e \n",Res);
+jH=118; // from fig.28
+k=0.017; // Btu/(hr)*(ft^2)*(F/ft),from table 5
+Z=0.97; // Z=(Pr*(1/3)) prandelt number
+ho=((jH)*(k/De)*(Z)*1); // using eq.6.15,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",ho);
+printf("\t cold fluid:inner tube side,water \n");
+Nt=364;
+n=8; // number of passes
+L=8; //ft
+at1=0.302; // flow area, in^2,from table 10
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.4f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+V=(Gt/(3600*62.5)); // fps
+printf("\t V is : %.2f fps \n",V);
+mu2=0.82*2.42; // at 90F,lb/(ft)*(hr),from fig 14
+D=(0.62/12); // ft,from table 10
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+hi=900; // using fig 25,Btu/(hr)*(ft^2)*(F)
+printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=0.62; // ft
+OD=0.75; //ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc);
+A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10
+A=(Nt*L*A2); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UD=((Q)/((A)*(delt)));
+printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.3f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for annulus \n");
+f=0.00162; // friction factor for reynolds number 40200, using fig.29
+Ds=23.25/12; // ft
+phys=1;
+N=(12*L/B); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+rowgas=0.209;
+printf("\t rowgas is %.3f lb/ft^3 \n",rowgas);
+s=rowgas/62.5;
+printf("\t s is %.5f \n",s);
+delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi
+printf("\t delPs is : %.0f psi \n",delPs);
+printf("\t allowable delPs is 2 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=0.000225; // friction factor for reynolds number 21400, using fig.26
+s=1;
+D=0.0517; //ft
+phyt=1;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
+printf("\t delPt is : %.1f psi \n",delPt);
+X1=0.090; // X1=((V^2)/(2*g)), for Gt 1060000,using fig.27
+delPr=((4*n*X1)/(s)); // using eq.7.46,psi
+printf("\t delPr is : %.1f psi \n",delPr);
+delPT=delPt+delPr; // using eq.7.47,psi
+printf("\t delPT is : %.1f psi \n",delPT);
+printf("\t allowable delPT is 10 psi \n");
+//end
diff --git a/1328/CH9/EX9.2/9_2.sce b/1328/CH9/EX9.2/9_2.sce new file mode 100644 index 000000000..51ce9a0db --- /dev/null +++ b/1328/CH9/EX9.2/9_2.sce @@ -0,0 +1,65 @@ +printf("\t example 9.2 \n");
+printf("\t approximate values are mentioned in the book \n");
+V1=4670; // inlet air volume,cfm
+Pp=0.8153; // Saturation partial pressure of water at 95F,psi,from table 7
+Ps=404.3;// Saturation specific volume of water at 95F,ft^3/lb, from table 7
+printf("\t The air and water both occupy the same volume at their respective partial pressures \n");
+Vw1=(V1*60/Ps); // water entering per hr,lb
+printf("\t volume of water entering is : %.0f lb \n",Vw1);
+printf("\t for first stage \n");
+c=2.33; // compression ratio
+P1=14.7; // psi
+P2=(P1*c); // (c=(P2/P1)),psi
+printf("\t P2 is : %.1f psi \n",P2);
+gama=1.4; // for air
+T1abs=95; // F
+T2absr=((T1abs+460)*(P2/P1)^((gama-1)/gama));
+printf("\t T2absr is : %.0f R \n",T2absr);
+T2abs=(T2absr-459.67); // F
+printf("\t T2abs is : %.0f F \n",T2abs);
+printf("\t for intercooler \n");
+V2=(V1*60*P1/P2); // ft^3/hr
+printf("\t final gas volume is : %.1e ft^3/hr \n",V2);
+Vw2=(V2/Ps); // water remaining in air, lb/hr
+printf("\t water remaining in air is : %.0f lb/hr \n",Vw2);
+C=(Vw1-Vw2); // condensation in inter cooler, lb/hr
+printf("\t condensation in inter cooler is : %.0f lb/hr \n",C);
+Vs=14.8; // Specific volume of atmospheric air,ft^3/lb
+printf("\t Specific volume of atmospheric air is : %.1f ft^3/lb \n",Vs);
+Va=(V1*60/Vs); // air in inlet gas, lb/hr
+printf("\t air in inlet gas is : %.2e lb/hr\n",Va);
+printf("\t heat load(245 to 95F) \n)");
+printf("\t sensible heat \n");
+Qair=((Va)*(0.25)*(245-T1abs)); // Btu/hr
+printf("\t Qair is : %.2e Btu/hr \n",Qair);
+Qwaters=(Vw1*0.45*(245-T1abs)); // Btu/hr
+printf("\t Qwaters is : %.2e Btu/hr \n",Qwaters);
+printf("\t latent heat \n");
+l=1040.1; // latent heat
+Qwaterl=(C*l); // Btu/hr
+printf("\t Qwater1 is : %.2e Btu/hr \n",Qwaterl);
+Qt1=Qair+Qwaters+Qwaterl;
+printf("\t total heat is : %.3e Btu/hr \n",Qt1);
+printf("\t for second stage \n");
+c=2.33; // compression ratio
+P3=(P2*c); // (c=(P3/P1)),psi
+printf("\t P3 is : %.1f psi \n",P3);
+V3=(V1*60*P1/P3); // ft^3/hr
+printf("\t final gas volume is : %.2e ft^3/hr \n",V3);
+Vw3=(V3/Ps); // water remaining in air, lb/hr
+printf("\t water remaining in air is : %.1f lb/hr \n",Vw3);
+C1=(297-Vw3); // condensation in inter cooler, lb/hr
+printf("\t condensation in inter cooler is : %.1f lb/hr \n",C1);
+printf("\t heat load(245 to 95F) \n)");
+printf("\t sensible heat \n");
+Qair=(Va*0.25*(245-T1abs)); // Btu/hr
+printf("\t Qair is : %.2e Btu/hr \n",Qair);
+Qwaters=(Vw2*0.44*(245-T1abs)); // Btu/hr
+printf("\t Qwater is : %.2e Btu/hr \n",Qwaters);
+printf("\t latent heat \n");
+l=1040.1; // latent heat
+Qwaterl=(C1*l); // Btu/hr, calculation mistake in book
+printf("\t Qwater is : %.2e Btu/hr \n",Qwaterl);
+Qt1=Qair+Qwaters+Qwaterl;
+printf("\t total heat is : %.3e Btu/hr \n",Qt1);
+// end
diff --git a/1328/CH9/EX9.3/9_3.sce b/1328/CH9/EX9.3/9_3.sce new file mode 100644 index 000000000..bb0c061e7 --- /dev/null +++ b/1328/CH9/EX9.3/9_3.sce @@ -0,0 +1,17 @@ +printf("\t example 9.3 \n");
+printf("\t approximate values are mentioned in the book \n");
+Va=18900; // air in inlet gas
+Vw1=692; // water entering
+Ma=(Va/29); // moles
+Mw=(Vw1/18); // moles
+M=(Ma+Mw); // moles
+printf("\t total number of moles re : %.1f \n",M);
+printf("\t Moles of air is : %.0f \n",Ma);
+printf("\t Moles of water is : %.1f \n",Mw);
+printf("\t after compression \n");
+P=34.2; // pressure,psi
+pw=(Mw/M)*(P); // partial pressure
+printf("\t partial pressure is :%.1f psi \n",pw);
+Td=124; // F, table table 7
+printf("\t dew point is : %.0f F \n",Td);
+// end
|