diff options
Diffstat (limited to '1328/CH5')
-rw-r--r-- | 1328/CH5/EX5.1/5_1.sce | 20 | ||||
-rw-r--r-- | 1328/CH5/EX5.2/5_2.sce | 25 | ||||
-rw-r--r-- | 1328/CH5/EX5.3/5_3.sce | 14 | ||||
-rw-r--r-- | 1328/CH5/EX5.4/5_4.sce | 27 | ||||
-rw-r--r-- | 1328/CH5/EX5.5/5_5.sce | 33 | ||||
-rw-r--r-- | 1328/CH5/EX5.6/5_6.sce | 27 |
6 files changed, 146 insertions, 0 deletions
diff --git a/1328/CH5/EX5.1/5_1.sce b/1328/CH5/EX5.1/5_1.sce new file mode 100644 index 000000000..ad15d4da7 --- /dev/null +++ b/1328/CH5/EX5.1/5_1.sce @@ -0,0 +1,20 @@ +printf("\t example 5.1 \n");
+T1=300; // hot fluid inlet temperature,F
+T2=200; // hot fluid outlet temperature,F
+t1=100; // cold fluid inlet temperature,F
+t2=150; // cold fluid outlet temperature,F
+printf("\t for counter current flow \n");
+delt1=T1-t2; //F
+delt2=T2-t1; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+printf("\t for parallel flow \n");
+delt1=T1-t1; // F
+delt2=T2-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+//end
diff --git a/1328/CH5/EX5.2/5_2.sce b/1328/CH5/EX5.2/5_2.sce new file mode 100644 index 000000000..bb0a355fe --- /dev/null +++ b/1328/CH5/EX5.2/5_2.sce @@ -0,0 +1,25 @@ +printf("\t example 5.2 \n");
+T1=300; // hot fluid inlet temperature,F
+T2=200; // hot fluid outlet temperature,F
+t1=150; // cold fluid inlet temperature,F
+t2=200; // cold fluid outlet temperature,F
+printf("\t for counter current flow \n");
+delt1=T1-t2; //F
+delt2=T2-t1; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+printf("\t for parallel flow \n");
+delt1=T1-t1; // F
+delt2=T2-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+if(delt2==0);
+ printf("\t denominator becomes infinity so LMTD becomes Zero \n");
+ printf("\t LMTD is Zero \n");
+else
+ LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+ end
+//end
diff --git a/1328/CH5/EX5.3/5_3.sce b/1328/CH5/EX5.3/5_3.sce new file mode 100644 index 000000000..892178e0e --- /dev/null +++ b/1328/CH5/EX5.3/5_3.sce @@ -0,0 +1,14 @@ +printf("\t example 5.3 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=300; // hot fluid inlet temperature,F
+T2=200; // hot fluid outlet temperature,F
+t1=100; // cold fluid inlet temperature,F
+t2=275; // cold fluid outlet temperature,F
+printf("\t for counter current flow \n");
+deltc=T2-t1; //F
+delth=T1-t2; // F
+printf("\t delth is : %.0f F \n",delth);
+printf("\t deltc is : %.0f F \n",deltc);
+LMTD=((delth-deltc)/((2.3)*(log10(delth/deltc))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+//end
diff --git a/1328/CH5/EX5.4/5_4.sce b/1328/CH5/EX5.4/5_4.sce new file mode 100644 index 000000000..c431850fc --- /dev/null +++ b/1328/CH5/EX5.4/5_4.sce @@ -0,0 +1,27 @@ +printf("\t example 5.4 \n");
+printf("\t process is isothermal with hot fluid so temperature of hot fluid remains constant \n");
+T1=300; // hot fluid inlet temperature,F
+T2=300; // hot fluid outlet temperature,F
+t1=100; // cold fluid inlet temperature,F
+t2=275; // cold fluid outlet temperature,F
+printf("\t for counter current flow \n");
+delt1=T1-t2; //F
+delt2=T2-t1; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+printf("\t for parallel flow \n");
+delt1=T1-t1; // F
+delt2=T2-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+if(delt2==0);
+ printf("\t denominator becomes infinity so LMTD becomes Zero \n");
+ printf("\t LMTD is Zero \n");
+else
+ LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+ end
+printf("\t these are identical \n");
+//end
diff --git a/1328/CH5/EX5.5/5_5.sce b/1328/CH5/EX5.5/5_5.sce new file mode 100644 index 000000000..1b0dcdd0a --- /dev/null +++ b/1328/CH5/EX5.5/5_5.sce @@ -0,0 +1,33 @@ +printf("\t example 5.5 \n");
+printf("\t approximate values are mentioned in the book \n");
+printf("\t for inlet \n");
+t1=99.1; // temperature of inlet,F
+t2=129.2; // temperature of outlet,F
+c=.478; // Btu/(hr)*(ft)*(F/ft)
+mu=2.95*2.42; // lb/(ft)(hr)
+k=0.078; // Btu/(hr)*(ft)*(F/ft)
+G=854000; // mass velocity,lb/(ft^2)(hr)
+D=0.622/12; // diameter,ft
+Re=((D)*((G)/(mu)))^(0.9);
+printf("\t Re is : %.2e \n",Re);
+Pr=((c)*(mu)/k)^(1/3); // prandtl number raised to power 1/3
+printf("\t Pr is : %.2f \n",Pr);
+Nu=0.0115*(Re)*(Pr); // formula for nusselt number
+printf("\t nusselt number is : %.0f \n",Nu);
+hi=((k)*(Nu)/(D)); // heat transfer coefficient
+printf("\t heat transfer coefficient is : %.0f \n",hi); // caculation mistake in book
+printf("\t for outlet \n");
+c=.495; // Btu/(hr)*(ft)*(F/ft)
+mu=2.20*2.42; // lb/(ft)(hr)
+k=0.078; // Btu/(hr)*(ft)*(F/ft)
+G=854000; // mass velocity,lb/(ft^2)(hr)
+D=0.622/12; // diameter,ft
+Re=((D)*((G)/(mu)))^(.9); // reynolds number raised to poer 0.9, calculation mistake in book
+printf("\t Re is : %.2e \n",Re);
+Pr=((c)*(mu)/k)^(1/3); // prandtl number raised to power 1/3
+printf("\t Pr is : %.2f \n",Pr);
+Nu=0.0115*(Re)*(Pr); // formula for nusselt number
+printf("\t nusselt number is : %.0f \n",Nu);
+hi=((k)*(Nu)/(D)); // heat transfer coefficient
+printf("\t heat transfer coefficient is : %.0f \n",hi); // caculation mistake in book
+//end
diff --git a/1328/CH5/EX5.6/5_6.sce b/1328/CH5/EX5.6/5_6.sce new file mode 100644 index 000000000..0d008f66e --- /dev/null +++ b/1328/CH5/EX5.6/5_6.sce @@ -0,0 +1,27 @@ +printf("\t example 5.6 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=300; // hot fluid inlet temperature,F
+T2=200; // hot fluid outlet temperature,F
+t1=80; // cold fluid inlet temperature,F
+t2=120; // cold fluid outlet temperature,F
+printf("\t for counter current flow \n");
+delT=T1-T2; // temperature difference for crude oil,F
+printf("\t temperature difference for crude oil is : %.0f F \n",delT);
+Kc=0.68; // from fig.17
+delt=t2-t1; // temperature difference for gasoline,F
+printf("\t temperature difference for gasoline is : %.0f F \n",delt);
+Kc<=0.10; // from fig.17
+printf("\t The larger value of K. correspQnds to the controlling heat transfer coefficient which is assumed to establish the variation of U with temperature \n");
+deltc=T2-t1; //F
+delth=T1-t2; // F
+printf("\t deltc is : %.0f F \n",deltc);
+printf("\t delth is : %.0f F \n",delth);
+A=((deltc)/(delth));
+printf("\t ratio of two local temperature difference is : %.3f \n",A);
+Fc=0.425; // from fig.17
+Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc);
+tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+// end
+
|