summaryrefslogtreecommitdiff
path: root/1328/CH20/EX20.7/20_7.sce
diff options
context:
space:
mode:
Diffstat (limited to '1328/CH20/EX20.7/20_7.sce')
-rw-r--r--1328/CH20/EX20.7/20_7.sce42
1 files changed, 42 insertions, 0 deletions
diff --git a/1328/CH20/EX20.7/20_7.sce b/1328/CH20/EX20.7/20_7.sce
new file mode 100644
index 000000000..7197becd1
--- /dev/null
+++ b/1328/CH20/EX20.7/20_7.sce
@@ -0,0 +1,42 @@
+printf("\t example 20.7 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=284; // inlet hot fluid,F
+T2=104; // outlet hot fluid,F
+t1=86; // inlet cold fluid,F
+t2=104; // outlet cold fluid,F
+W=1000; // lb/hr
+k=0.15; // thermal conductivity
+L=10;
+Beta=((2*k)/(500*(2/12))); // hoi=500Btu/(hr)*(ft^2)*(F) for water
+printf("\t beta is : %.4f \n",Beta);
+printf("\t for sand \n");
+C=0.2; // Btu/(lb)*(F)
+Q=((W)*(C)*(T1-T2)); // Btu/hr
+printf("\t total heat required for sand is : %.1e Btu/hr \n",Q);
+c=1;
+w=(Q/(t2-t1));
+printf("\t w is : %.0e lb/hr \n",w);
+R=((W*C)/(w*c));
+printf("\t R is : %.1f \n",R);
+S=((T2-T1)/(t1-T1));
+printf("\t S is : %.2f \n",S);
+W1=(8.33*(k*L)/C); // ((W1*C)/(k*L))=8.33 from fig 20.20b for Beta=0
+printf("\t rate per tube is : %.1f lb/hr \n",W1);
+N1=(W/W1);
+printf("\t number of tubes : %.0f \n",N1);
+printf("\t for air assume hoi=9 and Beta=0.2 \n");
+c1=0.25;
+w1=(Q/(c1*(t2-t1)));
+printf("\t w1 is : %.0e lb/hr \n",w1);
+W2=(5.23*(k*L)/C); // ((W1*C)/(k*L))=5.23 from fig 20.20b for Beta=0.2
+printf("\t rate per tube is : %.0f lb/hr \n",W2);
+N2=(W/W2);
+printf("\t number of tubes : %.0f \n",N2);
+// end
+
+
+
+
+
+
+