diff options
Diffstat (limited to '1328/CH20/EX20.4')
-rw-r--r-- | 1328/CH20/EX20.4/20_4.sce | 72 |
1 files changed, 72 insertions, 0 deletions
diff --git a/1328/CH20/EX20.4/20_4.sce b/1328/CH20/EX20.4/20_4.sce new file mode 100644 index 000000000..c9986bb99 --- /dev/null +++ b/1328/CH20/EX20.4/20_4.sce @@ -0,0 +1,72 @@ +printf("\t example 20.4 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=450; // inlet hot fluid,F
+T2=150; // outlet hot fluid,F
+t1=85; // inlet cold fluid,F
+t2=100; // outlet cold fluid,F
+W=3360; // lb/hr
+w=11100; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for SO2 \n");
+c=0.165; // Btu/(lb)*(F)
+Q=((W)*(c)*(T1-T2)); // Btu/hr
+printf("\t total heat required for SO2 is : %.3e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for water is : %.3e Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+R=20;
+S=0.0412;
+FT=0.98; // fig 18
+delt=(FT*LMTD);
+printf("\t delt is : %.0f F \n",delt);
+Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
+tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.1f \n",tc);
+printf("\t hot fluid:inner tube side, SO2 \n");
+at=0.0512; // flow area, ft^2, table 11
+printf("\t flow area is : %.4f ft^2 \n",at);
+Gt=(W/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+mu2=0.041; // at 300F,lb/(ft)*(hr), fig 15
+D=0.256; // ft, table 11
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.1e \n",Ret);
+jH=790; // from fig.24
+Z=0.006831; // Z=(k(c*mu/k)^(1/3)), Btu/(hr)*(ft)*(F/ft)
+hi=((jH)*(Z/D)); //Hi=(hi/phyp),using eq.6.15,Btu/(hr)*(ft^2)*(F)
+printf("\t hi is : %.1f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=3.068; // ft
+OD=3.5; // ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hio to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n",hio);
+printf("\t cold fluid water \n");
+L=8; // ft
+G=(w/(2*L));
+printf("\t G : %.0f lb/(hr)*(ft) \n",G);
+mu1=1.94; // at 92.5F, lb/(ft)*(hr)
+Re=(4*G/mu1);
+printf("\t Re is : %.2e \n",Re);
+Do=0.292; // ft
+ho=(65*(G/Do)^(1/3));
+printf("\t ho is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+Uc=((ho*hio)/(ho+hio)); // from eq 6.38
+printf("\t Uc is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Rd=0.01;
+hd=(1/Rd);
+printf("\t hd is : %.0f \n",hd);
+UD=((Uc*hd)/(Uc+hd));
+printf("\t UD is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+A=(Q/(UD*(LMTD)));
+printf("\t Area is : %.1f ft^2 \n",A); // calculation mistake in book
+a=0.917; // ft^2/ft, table 11
+l=(A/(a*8));
+printf("\t pipe length : %.2f \n",l);
+// end
|