summaryrefslogtreecommitdiff
path: root/1328/CH16/EX16.4/16_4.sce
diff options
context:
space:
mode:
Diffstat (limited to '1328/CH16/EX16.4/16_4.sce')
-rw-r--r--1328/CH16/EX16.4/16_4.sce111
1 files changed, 111 insertions, 0 deletions
diff --git a/1328/CH16/EX16.4/16_4.sce b/1328/CH16/EX16.4/16_4.sce
new file mode 100644
index 000000000..d40926e9a
--- /dev/null
+++ b/1328/CH16/EX16.4/16_4.sce
@@ -0,0 +1,111 @@
+printf("\t example 16.4 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=250; // inlet hot fluid,F
+T2=100; // outlet hot fluid,F
+t1=80; // inlet cold fluid,F
+t2=100; // outlet cold fluid,F
+W=30000; // lb/hr
+w=50500; // lb/hr
+printf("\t 1.for heat balance \n")
+C=0.225; // Btu/(lb)*(F)
+Q=((W)*(C)*(T1-T2)); // Btu/hr
+printf("\t total heat required for oxygwn is : %.2e Btu/hr \n",Q);
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for water is : %.2e Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+R=((T1-T2)/(t2-t1));
+printf("\t R is : %.1f \n",R);
+S=((t2-t1)/(T1-t1));
+printf("\t S is : %.4f \n",S);
+printf("\t FT is 0.87 \n"); // from fig 18
+delt=(0.87*LMTD); // F
+printf("\t delt is : %.1f F \n",delt);
+Tc=(T2+T1)/(2); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
+tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+printf("\t hot fluid:shell side,oxygen \n");
+ID=19.25; // in, table 11
+OD=1; // in, table 11
+as=((3.14*ID^2/(4))-(70*3.14*OD^2/(4))-(70*20*0.035*0.5))/(144);
+printf("\t flow area is : %.2f ft^2 \n",as);
+p=(70*3.14*(OD))-(70*20*0.035)+(70*20*0.5*2);
+printf("\t wetted perimeter : %.2e in \n",p);
+De=(4*as*12/(p));
+printf("\t De : %.3f ft \n",De);
+Gs=(W/as); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+mu1=0.0545; // at 175F,lb/(ft)*(hr), from fig.15
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.3e \n",Res);
+jH=59.5; // from fig.16.10a
+k=0.0175;
+Z=0.89; // Z=((c)*(mu1)/k)^(1/3), fig
+hf=((jH)*(k/De)*(Z)); //using eq.6.15,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",hf);
+Rdo=0.003;
+hdo=(1/Rdo);
+hf1=(hdo*hf)/(hdo+hf); // eq 16.37
+printf("\t hf1 : %.1f \n",hf1);
+hfi1=142; // fig 16.9
+printf("\t cold fluid:inner tube side,water \n");
+at1=0.479; // table 10
+L=16;
+Nt=70;
+n=4;
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.4f ft^2 \n",at);
+D=0.0652; // ft
+row=62.5;
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+V=(Gt/(3600*row));
+printf("\t V is : %.2f fps \n",V);
+mu2=1.94; // at 90F,lb/(ft)*(hr)
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+hi=(940*0.96); // fig 25
+printf("\t hi : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+Rdi=0.003;
+hdi=(1/Rdi);
+hi1=(hdi*hi)/(hdi+hi);
+printf("\t hi1 : %.0f Btu/(hr)*(ft^2)*(F) \n",hi1);
+UDi=((hfi1)*(hi1)/(hi1+hfi1)); // eq 16.41,Btu/(hr)*(ft^2)*(F)
+printf("\t overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UDi);
+A2=0.2048; // actual surface supplied for each tube,ft^2,from table 10
+A=(Nt*L*A2); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UDi1=((Q)/((A)*(delt)));
+printf("\t design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UDi1);
+Re=(1/UDi1)-(1/UDi);
+printf("\t excess fouling factor : %.5f \n",Re);
+Ro=9.27; //Adding to the outside fouling factor
+Rdo1=Rdo+(Re*Ro);
+printf("\t Rdo : %.4f \n",Rdo1);
+hf2=(hf/(1+(hf*Rdo1)));
+printf("\t hf2 : %.1f \n",hf2);
+hfi2=113;
+UDi2=((hfi2)*(hi1)/(hi1+hfi2)); // eq 16.41,Btu/(hr)*(ft^2)*(F)
+printf("\t overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UDi2);
+printf("\t pressure drop for annulus \n");
+De1=0.0433; // ft
+Res1=(De1*Gs/mu1);
+printf("\t reynolds number : %.2e \n",Res1);
+f=0.00025; // fig 16.10
+s=0.00133;
+delPs=((f*(Gs^2)*(L))/(5.22*(10^10)*(De1)*(s)*(1))); // using eq.7.44,psi
+printf("\t delPs is : %.1f psi \n",delPs);
+printf("\t allowable delPa is 2 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=0.00021; // friction factor for reynolds number 29100, using fig.26
+s=1;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(0.0625)*(s)*(1))); // using eq.7.45,psi
+printf("\t delPt is : %.0f psi \n",delPt);
+printf("\t allowable delPa is 10 psi \n");
+//end